Convex blocking and partial orders on the plane

被引:2
|
作者
Miguel Diaz-Banez, Jose [1 ]
Heredia, Marco A. [2 ]
Pelaez, Canek [3 ]
Sellares, J. Antoni [4 ]
Urrutia, Jorge [5 ]
Ventura, Inmaculada [1 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[2] Univ Autonoma Metropolitana Azcapotzalco, Dept Sistemas, Mexico City, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[4] Univ Girona, Dept Informat Matemat Aplicada & Estadist, Girona, Spain
[5] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
Convex blocking; Partial orders; Dual space; Multigraphs; Algorithms;
D O I
10.1016/j.comgeo.2015.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C = {c(1),..., c(n)} be a collection of disjoint closed bounded convex sets in the plane. Suppose that one of them, say c(1), represents a valuable object we want to uncover, and we are allowed to pick a direction alpha is an element of [0, 2 pi) along which we can translate (remove) the elements of C, one at a time, while avoiding collisions. We study the problem of finding a direction alpha(0) such that the number of elements that have to be removed along alpha(0) before we can remove c(1) is minimized. We prove that if we have the sorted set D of directions defined by the tangents between pairs of elements of C, we can find alpha(0) in O(n(2)) time. We also discuss the problem of sorting D, in o(n(2)logn) time. 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 50 条
  • [41] Orders for Simplifying Partial Partitions
    Christian Ronse
    Journal of Mathematical Imaging and Vision, 2017, 58 : 382 - 410
  • [42] Computing the frequency of partial orders
    van Dongen, MRC
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2004, PROCEEDINGS, 2004, 3258 : 772 - 776
  • [43] AUTOMORPHISM GROUPS OF PARTIAL ORDERS
    BIRD, EH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (05) : 1011 - 1015
  • [44] CORRELATION AMONG PARTIAL ORDERS
    WINKLER, PM
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (01): : 1 - 7
  • [45] FRACTIONAL DIMENSION OF PARTIAL ORDERS
    BRIGHTWELL, GR
    SCHEINERMAN, ER
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1992, 9 (02): : 139 - 158
  • [46] EFFECTIVE EXTENSIONS OF PARTIAL ORDERS
    ROY, DK
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1990, 36 (03): : 233 - 236
  • [47] Orders for Simplifying Partial Partitions
    Ronse, Christian
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 58 (03) : 382 - 410
  • [48] Uncountable homogeneous partial orders
    Droste, M
    Macpherson, D
    Mekler, A
    MATHEMATICAL LOGIC QUARTERLY, 2002, 48 (04) : 525 - 532
  • [49] PARTIAL ORDERS AND THE FIBONACCI NUMBERS
    BECK, I
    FIBONACCI QUARTERLY, 1990, 28 (02): : 172 - 174
  • [50] MUTUALLY COMPLEMENTARY PARTIAL ORDERS
    BROWN, JI
    WATSON, S
    DISCRETE MATHEMATICS, 1993, 113 (1-3) : 27 - 39