Convex blocking and partial orders on the plane

被引:2
|
作者
Miguel Diaz-Banez, Jose [1 ]
Heredia, Marco A. [2 ]
Pelaez, Canek [3 ]
Sellares, J. Antoni [4 ]
Urrutia, Jorge [5 ]
Ventura, Inmaculada [1 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[2] Univ Autonoma Metropolitana Azcapotzalco, Dept Sistemas, Mexico City, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[4] Univ Girona, Dept Informat Matemat Aplicada & Estadist, Girona, Spain
[5] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
Convex blocking; Partial orders; Dual space; Multigraphs; Algorithms;
D O I
10.1016/j.comgeo.2015.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C = {c(1),..., c(n)} be a collection of disjoint closed bounded convex sets in the plane. Suppose that one of them, say c(1), represents a valuable object we want to uncover, and we are allowed to pick a direction alpha is an element of [0, 2 pi) along which we can translate (remove) the elements of C, one at a time, while avoiding collisions. We study the problem of finding a direction alpha(0) such that the number of elements that have to be removed along alpha(0) before we can remove c(1) is minimized. We prove that if we have the sorted set D of directions defined by the tangents between pairs of elements of C, we can find alpha(0) in O(n(2)) time. We also discuss the problem of sorting D, in o(n(2)logn) time. 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 50 条
  • [32] Some properties of convex and increasing convex orders under Archimedean copula
    Guan, Qingyuan
    Wang, Bing Xing
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2024,
  • [33] Linearizing Partial Search Orders
    Scheffler, Robert
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022), 2022, 13453 : 425 - 438
  • [34] PARTIAL ORDERS FOR PARALLEL DEBUGGING
    FIDGE, CJ
    SIGPLAN NOTICES, 1989, 24 (01): : 183 - 194
  • [35] MODELING CONCURRENCY WITH PARTIAL ORDERS
    PRATT, V
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 1986, 15 (01) : 33 - 71
  • [36] SOME INEQUALITIES FOR PARTIAL ORDERS
    MILNER, EC
    WANG, ZS
    LI, BY
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1987, 3 (04): : 369 - 382
  • [37] Computably Enumerable Partial Orders
    Cholak, Peter A.
    Dzhafarov, Damir D.
    Schweber, Noah
    Shore, Richard A.
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2012, 1 (02): : 99 - 107
  • [38] PARTIAL ORDERS ON *-REGULAR RINGS
    Kudaybergenov, K. K.
    Nurjanov, B. O.
    UFA MATHEMATICAL JOURNAL, 2023, 15 (01): : 34 - 42
  • [39] On partial orders in Rickart rings
    Marovt, Janko
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (09): : 1707 - 1723
  • [40] Separability, Boxicity, and Partial Orders
    José-Miguel Díaz-Báñez
    Paul Horn
    Mario A. Lopez
    Nestaly Marín
    Adriana Ramírez-Vigueras
    Oriol Solé-Pi
    Alex Stevens
    Jorge Urrutia
    Order, 2023, 40 : 699 - 712