PARTIAL ORDERS ON *-REGULAR RINGS

被引:3
|
作者
Kudaybergenov, K. K. [1 ,2 ]
Nurjanov, B. O. [1 ,2 ,3 ]
机构
[1] Acad Sci Uzbek, Inst Math, Univ Skaya Str 9, Tashkent 100174, Uzbekistan
[2] Karakalpak State Univ, Ch Abdirov Str 1, Nukus 230112, Uzbekistan
[3] RAS, Vladikavkaz Sci Ctr, North Caucaus Ctr Math Studies, Markus Str 22, Vladikavkaz 230112, Russia
来源
UFA MATHEMATICAL JOURNAL | 2023年 / 15卷 / 01期
关键词
partial order; *-regular ring; von Neumann algebra; order topology;
D O I
10.13108/2023-15-1-34
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider some new partial orders on *-regular rings. Let A be a *-regular ring, P(A) be the lattice of all projectors in A and mu be a sharp normal normalized measure on P(A). Suppose that (A, rho) is a complete metric *-ring with respect to the rank metric rho on A defined as rho(x, y) = mu(l(x-y)) = mu(r(x-y)), x, y is an element of A, where l(a), r(a) is respectively the left and right support of an element a. On A we define the following three partial orders: a (sic)(s) b double left right arrow b = a + c, a perpendicular to c; a (sic)(l) b double left right arrow l(a)b = a; a (sic)(r) b double left right arrow br(a) = a, a perpendicular to c means algebraic orthogonality, that is, ac = ca = a*c = ac* = 0. We prove that the order topologies associated with these partial orders are stronger than the topology generated by the metric rho. We consider the restrictions of these partial orders on the subsets of projectors, unitary operators and partial isometries of *-regular algebra A . In particular, we show that these three orders coincide with the usual order <= on the lattice of the projectors of *-regular algebra. We also show that the ring isomorphisms of *-regular rings preserve partial orders (sic)(l) and (sic)(r).
引用
收藏
页码:34 / 42
页数:9
相关论文
共 50 条
  • [1] On partial orders in Rickart rings
    Marovt, Janko
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (09): : 1707 - 1723
  • [2] ON PARTIAL ORDERS IN PROPER *-RINGS
    Marovt, Janko
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2018, 59 (01): : 193 - 204
  • [3] Extending partial orders on rings
    Findler, Moreta
    Ma, Jingjing
    [J]. QUAESTIONES MATHEMATICAE, 2021, 44 (07) : 869 - 879
  • [4] LEFT ORDERS IN STRONGLY REGULAR-RINGS
    ANH, PN
    MARKI, L
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 : 303 - 310
  • [5] LEFT ORDERS IN ABELIAN REGULAR-RINGS
    TALWAR, S
    [J]. MATHEMATIKA, 1993, 40 (80) : 256 - 274
  • [6] On lattice extensions of partial orders of rings
    Wojciechowski, PJ
    Kreinovich, V
    [J]. COMMUNICATIONS IN ALGEBRA, 1997, 25 (03) : 935 - 941
  • [7] PARTIAL ORDERS ON A FIELD AND VALUATION RINGS
    BECKER, E
    [J]. COMMUNICATIONS IN ALGEBRA, 1979, 7 (18) : 1933 - 1976
  • [8] PARTIAL ORDERING ON VONNEUMANN REGULAR RINGS
    PHAMPIERREJEAN, ML
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (07): : 317 - 319
  • [9] On some generalized inverses and partial orders in *-rings
    Marovt, Janko
    Mosic, Dijana
    Cremer, Insa
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (12)
  • [10] Partial orders on the power sets of Baer rings
    Ungor, B.
    Halicioglu, S.
    Harmanci, A.
    Marovt, J.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (01)