PARTIAL ORDERS ON *-REGULAR RINGS

被引:4
|
作者
Kudaybergenov, K. K. [1 ,2 ]
Nurjanov, B. O. [1 ,2 ,3 ]
机构
[1] Acad Sci Uzbek, Inst Math, Univ Skaya Str 9, Tashkent 100174, Uzbekistan
[2] Karakalpak State Univ, Ch Abdirov Str 1, Nukus 230112, Uzbekistan
[3] RAS, Vladikavkaz Sci Ctr, North Caucaus Ctr Math Studies, Markus Str 22, Vladikavkaz 230112, Russia
来源
UFA MATHEMATICAL JOURNAL | 2023年 / 15卷 / 01期
关键词
partial order; *-regular ring; von Neumann algebra; order topology;
D O I
10.13108/2023-15-1-34
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider some new partial orders on *-regular rings. Let A be a *-regular ring, P(A) be the lattice of all projectors in A and mu be a sharp normal normalized measure on P(A). Suppose that (A, rho) is a complete metric *-ring with respect to the rank metric rho on A defined as rho(x, y) = mu(l(x-y)) = mu(r(x-y)), x, y is an element of A, where l(a), r(a) is respectively the left and right support of an element a. On A we define the following three partial orders: a (sic)(s) b double left right arrow b = a + c, a perpendicular to c; a (sic)(l) b double left right arrow l(a)b = a; a (sic)(r) b double left right arrow br(a) = a, a perpendicular to c means algebraic orthogonality, that is, ac = ca = a*c = ac* = 0. We prove that the order topologies associated with these partial orders are stronger than the topology generated by the metric rho. We consider the restrictions of these partial orders on the subsets of projectors, unitary operators and partial isometries of *-regular algebra A . In particular, we show that these three orders coincide with the usual order <= on the lattice of the projectors of *-regular algebra. We also show that the ring isomorphisms of *-regular rings preserve partial orders (sic)(l) and (sic)(r).
引用
收藏
页码:34 / 42
页数:9
相关论文
共 50 条
  • [41] Solving a minus partial ordering equation over von Neumann regular rings
    Yongge Tian
    Revista Matemática Complutense, 2011, 24 : 335 - 342
  • [42] Star, left-star, and right-star partial orders in Rickart *-rings
    Marovt, Janko
    Rakic, Dragan S.
    Djordjevic, Dragan S.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (02): : 343 - 365
  • [43] Solutions of minus partial ordering equations over von Neumann regular rings
    Guan, Yu
    Tong, Zhaojia
    OPEN MATHEMATICS, 2015, 13 : 229 - 238
  • [44] ON ASSOCIATION SCHEMES, SCHUR RINGS, STRONGLY REGULAR GRAPHS AND PARTIAL DIFFERENCE SETS
    MA, SL
    ARS COMBINATORIA, 1989, 27 : 211 - 220
  • [45] Solving a minus partial ordering equation over von Neumann regular rings
    Tian, Yongge
    REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (02): : 335 - 342
  • [46] REGULAR OVERRINGS OF REGULAR LOCAL RINGS
    SALLY, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 171 (SEP) : 291 - 300
  • [47] Semiregular, weakly regular, and π-regular rings
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2002, 109 (3) : 1509 - 1588
  • [48] PARTIAL ORDERS ON PARTIAL ISOMETRIES
    Garcia, Stephan Ramon
    Martin, Robert T. W.
    Ross, William T.
    JOURNAL OF OPERATOR THEORY, 2016, 75 (02) : 409 - 442
  • [49] On SF-rings and Regular Rings
    Subedi, Tikaram
    Buhphang, Ardeline Mary
    KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (03): : 397 - 406
  • [50] REGULAR-RINGS ARE VERY REGULAR
    PAGE, SS
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1982, 25 (01): : 118 - 118