MUTUALLY COMPLEMENTARY PARTIAL ORDERS

被引:6
|
作者
BROWN, JI
WATSON, S
机构
[1] Department of Mathematics, York University, North York, Ont.
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0012-365X(93)90506-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two partial orders P = (X, less-than-or-equal-to) and Q = (X, less-than-or-equal-to') are complementary if P and Q = {(X, X): x is-an-element-of x) and the transitive closure of P or Q is {(X, Y): X, Y is-an-element-of X). We investigate here the size omega(n) of the largest set of pairwise complementary partial orders on a set of size n. In particular, for large n we construct OMEGA(n/log n) mutually complementary partial orders of order n, and show on the other hand that omega(n) < 0.486n for all sufficiently large n. This provides an estimate of the maximum number of mutually complementary T0 topologies on a set of size n.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 50 条