Bundle Method for Nonconvex Nonsmooth Constrained Optimization

被引:0
|
作者
Minh Ngoc Dao [1 ,2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math & Informat, Hanoi, Vietnam
[2] Univ Toulouse, Inst Math, Toulouse, France
关键词
Nonsmooth optimization; constrained optimization; bundle method; lower-C-1; function; upper-C-1; MEAN-VALUE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper develops a nonconvex bundle method based on the downshift mechanism and a proximity control management technique to solve nonconvex nonsmooth constrained optimization problems. We prove its global convergence in the sense of subsequences for both classes of lower-C-1 and upper-C-1 functions.
引用
收藏
页码:1061 / 1090
页数:30
相关论文
共 50 条
  • [21] Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization
    Andrzej Ruszczyński
    [J]. Optimization Letters, 2020, 14 : 1615 - 1625
  • [22] A bundle-filter method for nonsmooth convex constrained optimization
    Karas, Elizabeth
    Ribeiro, Ademir
    Sagastizabal, Claudia
    Solodov, Mikhail
    [J]. MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) : 297 - 320
  • [23] A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
    Joki, Kaisa
    Bagirov, Adil M.
    Karmitsa, Napsu
    Makela, Marko M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (03) : 501 - 535
  • [24] A BUNDLE-TYPE QUASI-NEWTON METHOD FOR NONCONVEX NONSMOOTH OPTIMIZATION
    Tang, Chunming
    Chent, Huangyue
    Jian, Jinbao
    Liu, Shuai
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (02): : 367 - 393
  • [25] A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
    Kaisa Joki
    Adil M. Bagirov
    Napsu Karmitsa
    Marko M. Mäkelä
    [J]. Journal of Global Optimization, 2017, 68 : 501 - 535
  • [26] A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization
    Jian, Jin-bao
    Tang, Chun-ming
    Shi, Lu
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (02): : 254 - 273
  • [27] Subgradient Method for Nonconvex Nonsmooth Optimization
    A. M. Bagirov
    L. Jin
    N. Karmitsa
    A. Al Nuaimat
    N. Sultanova
    [J]. Journal of Optimization Theory and Applications, 2013, 157 : 416 - 435
  • [28] Subgradient Method for Nonconvex Nonsmooth Optimization
    Bagirov, A. M.
    Jin, L.
    Karmitsa, N.
    Al Nuaimat, A.
    Sultanova, N.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 416 - 435
  • [29] A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization
    Jin-bao JIAN
    Chun-ming TANG
    Lu SHI
    [J]. Acta Mathematicae Applicatae Sinica, 2018, 34 (02) : 254 - 273
  • [30] A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization
    Jin-bao Jian
    Chun-ming Tang
    Lu Shi
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 254 - 273