Harnack Inequality for Non-Local Schrodinger Operators

被引:4
|
作者
Athreya, Siva [1 ]
Ramachandran, Koushik [2 ]
机构
[1] Indian Stat Inst Bangalore, Bangalore 560059, Karnataka, India
[2] Oklahoma State Univ Stillwater, Stillwater, OK 74074 USA
关键词
Conditional gauge; Gauge; Harnack inequality; Jump diffusion processes; Non-local operators; Carleson estimate; Boundary harnack principle; 3G Inequality; CONDITIONAL GAUGE; MARKOV-PROCESSES; POTENTIAL-THEORY; PRINCIPLE; CONTINUITY;
D O I
10.1007/s11118-017-9646-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x is an element of R-d, d >= 3, and f : R-d -> R be a twice differentiable function with all second partial derivatives being continuous. For 1 <= i, j <= d, let a(ij) : R-d -> R be a differentiable function with all partial derivatives being continuous and bounded. We shall consider the Schrodinger operator associated to Lf (x) =1/2 Sigma(d)(i=1) Sigma(d)(i=1) partial derivative/partial derivative x(i) (a(ij) (.) partial derivative f/partial derivative x(j)) (x) + integral(Rd\{0}) [f(y) - f (x)] J (x, y) dy where J : R-d x R-d -> R is a symmetric measurable function. Let q : R-d -> R. We specify assumptions on a, q, and J so that non-negative bounded solutions to Lf + qf = 0 satisfy a Harnack inequality. As tools we also prove a Carleson estimate, a uniform Boundary Harnack Principle and a 3G inequality for solutions to Lf = 0.
引用
收藏
页码:515 / 551
页数:37
相关论文
共 50 条
  • [41] Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (11) : 3747 - 3803
  • [42] The theory of De Giorgi for non-local operators
    Kassmann, Moritz
    [J]. COMPTES RENDUS MATHEMATIQUE, 2007, 345 (11) : 621 - 624
  • [43] A Resonance Problem for Non-Local Elliptic Operators
    Fiscella, Alessio
    Servadei, Raffaella
    Valdinoci, Enrico
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (04): : 411 - 431
  • [44] Generalized Hormander theorem for non-local operators
    Komatsu, T
    Takeuchi, A
    [J]. RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, : 234 - 245
  • [45] A REMARK ON NON-LOCAL OPERATORS WITH VARIABLE ORDER
    Uemura, Toshihiro
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (02) : 503 - 514
  • [46] The complement value problem for non-local operators
    Sun, Wei
    [J]. STOCHASTICS AND DYNAMICS, 2020, 20 (03)
  • [47] On a Class of Non-local Operators in Conformal Geometry
    Chang, Sun Yung Alice
    Yang, Ray A.
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 215 - 234
  • [48] On a class of non-local operators in conformal geometry
    Sun Yung Alice Chang
    Ray A. Yang
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 215 - 234
  • [49] On a Class of Non-local Operators in Conformal Geometry
    Sun Yung Alice CHANG
    Ray A.YANG
    [J]. Chinese Annals of Mathematics,Series B, 2017, (01) : 215 - 234
  • [50] Non-local pseudo-differential operators
    Ishimura, R
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (12): : 1241 - 1276