Harnack Inequality for Non-Local Schrodinger Operators

被引:4
|
作者
Athreya, Siva [1 ]
Ramachandran, Koushik [2 ]
机构
[1] Indian Stat Inst Bangalore, Bangalore 560059, Karnataka, India
[2] Oklahoma State Univ Stillwater, Stillwater, OK 74074 USA
关键词
Conditional gauge; Gauge; Harnack inequality; Jump diffusion processes; Non-local operators; Carleson estimate; Boundary harnack principle; 3G Inequality; CONDITIONAL GAUGE; MARKOV-PROCESSES; POTENTIAL-THEORY; PRINCIPLE; CONTINUITY;
D O I
10.1007/s11118-017-9646-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x is an element of R-d, d >= 3, and f : R-d -> R be a twice differentiable function with all second partial derivatives being continuous. For 1 <= i, j <= d, let a(ij) : R-d -> R be a differentiable function with all partial derivatives being continuous and bounded. We shall consider the Schrodinger operator associated to Lf (x) =1/2 Sigma(d)(i=1) Sigma(d)(i=1) partial derivative/partial derivative x(i) (a(ij) (.) partial derivative f/partial derivative x(j)) (x) + integral(Rd\{0}) [f(y) - f (x)] J (x, y) dy where J : R-d x R-d -> R is a symmetric measurable function. Let q : R-d -> R. We specify assumptions on a, q, and J so that non-negative bounded solutions to Lf + qf = 0 satisfy a Harnack inequality. As tools we also prove a Carleson estimate, a uniform Boundary Harnack Principle and a 3G inequality for solutions to Lf = 0.
引用
收藏
页码:515 / 551
页数:37
相关论文
共 50 条
  • [31] A non-local inequality and global existence
    Gressman, Philip T.
    Krieger, Joachim
    Strain, Robert M.
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (02) : 642 - 648
  • [32] Elliptic Harnack inequalities for symmetric non-local Dirichlet forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 : 1 - 42
  • [33] Conformally invariant non-local operators
    Branson, T
    Gover, AR
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (01) : 19 - 60
  • [34] Heat trace of non-local operators
    Banuelos, Rodrigo
    Yolcu, Selma Yildirim
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 304 - 318
  • [35] Laplacian perturbed by non-local operators
    Wang, Jie-Ming
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 521 - 556
  • [36] Laplacian perturbed by non-local operators
    Jie-Ming Wang
    [J]. Mathematische Zeitschrift, 2015, 279 : 521 - 556
  • [37] Non-local gradient dependent operators
    Bjorland, C.
    Caffarelli, L.
    Figalli, A.
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 1859 - 1894
  • [38] Liouville theorems for non-local operators
    Priola, E
    Zabczyk, J
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 216 (02) : 455 - 490
  • [39] Lp-independence of spectral bounds of Schrodinger-type operators with non-local potentials
    Tawara, Yoshihiro
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (03) : 767 - 788
  • [40] Harnack inequality for non-divergence form operators on stratified groups
    Bonfiglioli, Andrea
    Uguzzoni, Francesco
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (06) : 2463 - 2481