Generalized Hormander theorem for non-local operators

被引:3
|
作者
Komatsu, T [1 ]
Takeuchi, A [1 ]
机构
[1] Osaka City Univ, Dept Math, Osaka 558, Japan
关键词
D O I
10.1142/9789812702241_0015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The smoothness of marginal distributions of solutions to SDE's with jumps is investigated via the Malliavin calculus on the cad-lag space. A key lemma on the estimation of some functionals of semi-martingales is presented. Using the key lemma, the Hormander theorem on the hypo-ellipticity of parabolic differential operators is generalized to a theorem for the integro-differential operators associated with the SDE's. This article is essentially a summary of [3]. But the last section where the main theorem is presented is an improvement of [3].
引用
收藏
页码:234 / 245
页数:12
相关论文
共 50 条
  • [1] Fundamental solutions of generalized non-local Schrodinger operators
    Do, Tan Duc
    ARKIV FOR MATEMATIK, 2022, 60 (01): : 43 - 66
  • [2] Perturbation by non-local operators
    Chen, Zhen-Qing
    Wang, Jie-Ming
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02): : 606 - 639
  • [3] The Hormander multiplier theorem for multilinear operators
    Grafakos, Loukas
    Si, Zengyan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 133 - 147
  • [4] ON A THEOREM IN NON-LOCAL FIELD THEORIES
    GULMANELLI, P
    NUOVO CIMENTO, 1953, 10 (11): : 1582 - 1589
  • [5] LEVINSON THEOREM FOR NON-LOCAL INTERACTIONS
    ZHONG, QM
    DAI, AY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : 2085 - 2093
  • [6] Heat trace of non-local operators
    Banuelos, Rodrigo
    Yolcu, Selma Yildirim
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 304 - 318
  • [7] Conformally invariant non-local operators
    Branson, T
    Gover, AR
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (01) : 19 - 60
  • [8] Laplacian perturbed by non-local operators
    Wang, Jie-Ming
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 521 - 556
  • [9] Laplacian perturbed by non-local operators
    Jie-Ming Wang
    Mathematische Zeitschrift, 2015, 279 : 521 - 556
  • [10] Non-local gradient dependent operators
    Bjorland, C.
    Caffarelli, L.
    Figalli, A.
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 1859 - 1894