SimMap: Similarity maps for scale invariant local shape descriptors

被引:4
|
作者
Roman-Rangel, Edgar [1 ]
Wang, Changhu [2 ]
Marchand-Maillet, Stephane [1 ]
机构
[1] Univ Geneva, Dept Comp Sci, Viper Grp, CH-1211 Geneva 4, Switzerland
[2] Microsoft Res Asia, Multimedia Search & Min Grp, Beijing, Peoples R China
基金
瑞士国家科学基金会;
关键词
Binary images; Local shape descriptors; Shape context; Characteristic scale; Similarity map; Shape detection;
D O I
10.1016/j.neucom.2015.06.093
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional approaches to estimate a scale invariant spatial scope for local image descriptors, a.k.a. characteristic scale, work well for intensity images. However, they fail when it comes to deal with binary images. We address this problem and propose a new method to estimate the characteristic scale of local shape descriptors. The proposed method extends the use of the distance map transform to produce similarity maps that approximate local intensity changes in binary images. We first validated our method evaluating the consistency of characteristic scales estimated across scaled instances of images; and then by comparing its performance, with respect to traditional methods, in the tasks of Content-Based Image Retrieval and shape detection in different datasets of binary images (shapes of Maya and Chinese hieroglyphs, and generic shapes). As shown by our results, the proposed similarity map produces characteristic scales that are more robust to scale variations, and leads to competitive results. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:888 / 898
页数:11
相关论文
共 50 条
  • [21] Similarity-Invariant Subspaces and Similarity-Preserving Linear Maps
    Guo Xing JI
    Hong Ke DU Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (03) : 489 - 498
  • [22] Robust matching method for scale and rotation invariant local descriptors and its application to image indexing
    Terasawa, K
    Nagasaki, T
    Kawashima, T
    INFORMATION RETRIEVAL TECHNOLOGY, PROCEEDINGS, 2005, 3689 : 601 - 615
  • [23] Kernel PCA for similarity invariant shape recognition
    Sahbi, Hichem
    NEUROCOMPUTING, 2007, 70 (16-18) : 3034 - 3045
  • [24] Rotation Invariant Local Frequency Descriptors for Texture Classification
    Maani, Rouzbeh
    Kalra, Sanjay
    Yang, Yee-Hong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (06) : 2409 - 2419
  • [25] Scale invariant texture descriptors for classifying celiac disease
    Hegenbart, Sebastian
    Uhl, Andreas
    Vecsei, Andreas
    Wimmer, Georg
    MEDICAL IMAGE ANALYSIS, 2013, 17 (04) : 458 - 474
  • [26] Novel similarity measures for differential invariant descriptors for generic object retrieval
    Balmashnova, E.
    Florack, L. M. J.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 31 (2-3) : 121 - 132
  • [27] Research on Local Self-similarity Descriptors in Images
    Guan, Lili
    Wang, Jiuhe
    Yang, Hongbo
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 690 - 693
  • [28] Novel Similarity Measures for Differential Invariant Descriptors for Generic Object Retrieval
    E. Balmashnova
    L. M. J. Florack
    Journal of Mathematical Imaging and Vision, 2008, 31 : 121 - 132
  • [29] SCALE INVARIANT DESCRIPTORS IN PATTERN ANALYSIS OF MELANOCYTIC LESIONS
    Mendoza, Carlos S.
    Serrano, Carmen
    Acha, Begona
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 4193 - 4196
  • [30] Hippocampal surface discrimination via invariant descriptors of spherical conformal maps
    Gutman, Boris
    Wang, Yalin
    Lui, Lok Ming
    Chan, Tony F.
    Thompson, Paul M.
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 1316 - +