Hippocampal surface discrimination via invariant descriptors of spherical conformal maps

被引:0
|
作者
Gutman, Boris [1 ]
Wang, Yalin [1 ,2 ,3 ]
Lui, Lok Ming [1 ]
Chan, Tony F. [1 ]
Thompson, Paul M. [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Sch Med, Lab Neuro Imaging, Los Angeles, CA 90024 USA
[3] Univ Calif Los Angeles, Sch Med, Inst Brain Res, Los Angeles, CA 90024 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1109/ISBI.2007.357102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weighted spherical harmonic shape descriptors are based on the subspaces of L-2(S-2) spanned by spherical harmonics of a single degree. Such shape descriptors incorporate both shape and scaling information, while preserving invariance with respect to other non-reflexive affine transformations. Thus, their application allows for direct comparison of shapes across subjects, resolutions and within-subject components. On the other hand, global conformal parametrization preserves intrinsic conformal structure and thus allows for vast differences in object scaling on the 2-sphere. As a result, surface energy is distributed more evenly across the spherical harmonic spectrum, with the higher resolution descriptors representing regions with higher conformal factor. We applied our morphometry to 96 hippocampal surfaces. The data used were 12 control and 12 Alzheimer (AD) T1 and T2 subjects. An independent-samples t-test revealed significant differences for the change in hemispheric shape difference in shape descriptors of degrees 3, 20, 22, 25 and 27, with the highest p-value of .001, t = 4.019, predicting 22 out of 24 subjects' diagnosis correctly.
引用
收藏
页码:1316 / +
页数:2
相关论文
共 50 条
  • [1] Hippocampal surface analysis using spherical harmonic function applied to surface conformal mapping
    Gutman, Boris
    Wang, Yalin
    Lui, Lok Ming
    Chan, Tony F.
    Thompson, Paul M.
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 964 - +
  • [2] Landmark-based spherical quasi-conformal mapping for hippocampal surface registration
    Li, Nan
    Su, Qingtang
    Yao, Tao
    Ba, Maowen
    Wang, Gang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (06) : 3997 - 4014
  • [3] A Möbius-Invariant Family of Conformal Maps
    Diego Mejía
    Ch. Pommerenke
    Computational Methods and Function Theory, 2004, 2 (2) : 337 - 351
  • [4] SimMap: Similarity maps for scale invariant local shape descriptors
    Roman-Rangel, Edgar
    Wang, Changhu
    Marchand-Maillet, Stephane
    NEUROCOMPUTING, 2016, 175 : 888 - 898
  • [5] CONFORMALLY INVARIANT EXTREMAL PROBLEMS AND QUASI-CONFORMAL MAPS
    VUORINEN, M
    QUARTERLY JOURNAL OF MATHEMATICS, 1992, 43 (172): : 501 - 514
  • [6] Conformal semi-invariant Riemannian maps to Sasakian manifolds
    Polat, Murat
    Karagol, Sumeyye
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2025, 74 (01): : 56 - 67
  • [7] CONFORMAL ANTI-INVARIANT RIEMANNIAN MAPS TO KAHLER MANIFOLDS
    Akyol, Mehmet Akif
    Sahin, Bayram
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 187 - 198
  • [8] CONFORMAL SEMI-INVARIANT RIEMANNIAN MAPS TO KAHLER MANIFOLDS
    Akyol, Mehmet Akif
    Sahin, Bayram
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 459 - 468
  • [9] Invariant curves for birational surface maps
    Diller, Jeffrey
    Jackson, Daniel
    Sommese, Andrew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (06) : 2973 - 2991
  • [10] Study of reflectors for illumination via conformal maps
    Aleman-Castaneda, Luis A.
    Alonso, Miguel A.
    OPTICS LETTERS, 2019, 44 (15) : 3809 - 3812