Hippocampal surface discrimination via invariant descriptors of spherical conformal maps

被引:0
|
作者
Gutman, Boris [1 ]
Wang, Yalin [1 ,2 ,3 ]
Lui, Lok Ming [1 ]
Chan, Tony F. [1 ]
Thompson, Paul M. [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Sch Med, Lab Neuro Imaging, Los Angeles, CA 90024 USA
[3] Univ Calif Los Angeles, Sch Med, Inst Brain Res, Los Angeles, CA 90024 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1109/ISBI.2007.357102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weighted spherical harmonic shape descriptors are based on the subspaces of L-2(S-2) spanned by spherical harmonics of a single degree. Such shape descriptors incorporate both shape and scaling information, while preserving invariance with respect to other non-reflexive affine transformations. Thus, their application allows for direct comparison of shapes across subjects, resolutions and within-subject components. On the other hand, global conformal parametrization preserves intrinsic conformal structure and thus allows for vast differences in object scaling on the 2-sphere. As a result, surface energy is distributed more evenly across the spherical harmonic spectrum, with the higher resolution descriptors representing regions with higher conformal factor. We applied our morphometry to 96 hippocampal surfaces. The data used were 12 control and 12 Alzheimer (AD) T1 and T2 subjects. An independent-samples t-test revealed significant differences for the change in hemispheric shape difference in shape descriptors of degrees 3, 20, 22, 25 and 27, with the highest p-value of .001, t = 4.019, predicting 22 out of 24 subjects' diagnosis correctly.
引用
收藏
页码:1316 / +
页数:2
相关论文
共 50 条
  • [31] View-based robot localization using illumination-invariant spherical harmonics descriptors
    Friedrich, Holger
    Dederscheck, David
    Mutz, Martin
    Mester, Rudolf
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 543 - 550
  • [32] Spatial Characterization of fMRI Activation Maps Using Invariant 3-D Moment Descriptors
    Ng, Bernard
    Abugharbieh, Rafeef
    Huang, Xuemei
    McKeown, Martin J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (02) : 261 - 268
  • [33] Wide Angle Scanning Conformal Phased Array on a Spherical Surface
    Hizal, Altunkan
    2013 IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEMS AND TECHNOLOGY, 2013, : 259 - 266
  • [34] DISCRIMINATION BETWEEN ALZHEIMER'S DISEASE AND AMYOTROPHIC LATERAL SCLEROSIS VIA AFFINE INVARIANT SPHERICAL HARMONICS ANALYSIS OF SPECT IMAGES
    Horaisova, K.
    Dudasova, J.
    Kukal, J.
    Rusina, R.
    Matej, R.
    Buncova, M.
    NEURAL NETWORK WORLD, 2018, 28 (01) : 17 - 39
  • [35] Absolute spherical surface metrology by differencing rotation maps
    Wang, Weibo
    Zhang, Mengqian
    Yan, Siwen
    Fan, Zhigang
    Tan, Jiubin
    APPLIED OPTICS, 2015, 54 (20) : 6186 - 6189
  • [36] Conformal invariant cosmological perturbations via the covariant approach:multicomponent universe
    郑云龙
    牟一岑
    饶浩民
    李明哲
    Chinese Physics C, 2018, 42 (03) : 98 - 105
  • [37] Conformal invariant cosmological perturbations via the covariant approach: multicomponent universe
    Zheng, Yunlong
    Mou, Yicen
    Rao, Haomin
    Li, Mingzhe
    CHINESE PHYSICS C, 2018, 42 (03)
  • [38] Expression-invariant face recognition via spherical embedding
    Bronstein, AM
    Bronstein, MM
    Kimmel, R
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2641 - 2644
  • [39] Rational surface maps with invariant meromorphic two-forms
    Jeffrey Diller
    Jan-Li Lin
    Mathematische Annalen, 2016, 364 : 313 - 352
  • [40] Shape analysis of left ventricle using invariant 3-D spherical harmonics shape descriptors
    Ben Abdallah, A.
    Ghorbel, F.
    Essabbah, H.
    Bedoui, M. H.
    GEOMETRIC MODELING & IMAGING: MODERN TECHNIQUES AND APPLICATIONS, 2008, : 53 - +