SimMap: Similarity maps for scale invariant local shape descriptors

被引:4
|
作者
Roman-Rangel, Edgar [1 ]
Wang, Changhu [2 ]
Marchand-Maillet, Stephane [1 ]
机构
[1] Univ Geneva, Dept Comp Sci, Viper Grp, CH-1211 Geneva 4, Switzerland
[2] Microsoft Res Asia, Multimedia Search & Min Grp, Beijing, Peoples R China
基金
瑞士国家科学基金会;
关键词
Binary images; Local shape descriptors; Shape context; Characteristic scale; Similarity map; Shape detection;
D O I
10.1016/j.neucom.2015.06.093
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional approaches to estimate a scale invariant spatial scope for local image descriptors, a.k.a. characteristic scale, work well for intensity images. However, they fail when it comes to deal with binary images. We address this problem and propose a new method to estimate the characteristic scale of local shape descriptors. The proposed method extends the use of the distance map transform to produce similarity maps that approximate local intensity changes in binary images. We first validated our method evaluating the consistency of characteristic scales estimated across scaled instances of images; and then by comparing its performance, with respect to traditional methods, in the tasks of Content-Based Image Retrieval and shape detection in different datasets of binary images (shapes of Maya and Chinese hieroglyphs, and generic shapes). As shown by our results, the proposed similarity map produces characteristic scales that are more robust to scale variations, and leads to competitive results. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:888 / 898
页数:11
相关论文
共 50 条
  • [1] Invariant Local Shape Descriptors: Classification of Large-Scale Shapes with Local Dissimilarities
    Li, Xizhi
    Lange, Patrick
    Weller, Rene
    Zachmann, Gabriel
    CGI'17: PROCEEDINGS OF THE COMPUTER GRAPHICS INTERNATIONAL CONFERENCE, 2017,
  • [2] LOCAL CONTOUR DESCRIPTORS AROUND SCALE-INVARIANT KEYPOINTS
    Kovacs, Andrea
    Sziranyi, Tamas
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1105 - +
  • [3] Affine invariant shape descriptors
    Kurt, Binnur
    Capar, Abdulkerim
    Goekmen, Muhittin
    2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 1276 - 1279
  • [4] Detecting hands in video images using scale invariant local descriptors
    Richarz, Jan
    Ploetz, Thomas
    Fink, Gernot A.
    PROCEEDINGS OF THE SEVENTH IASTED INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING, AND IMAGE PROCESSING, 2007, : 259 - +
  • [5] A similarity retrieval of 3D polygonal models using rotation invariant shape descriptors
    Suzuki, MT
    Kato, T
    Otsu, N
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 2946 - 2952
  • [6] Similarity Domains Machine for Scale-Invariant and Sparse Shape Modeling
    Ozer, Sedat
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (02) : 534 - 545
  • [7] Rotation Invariant Local Shape Descriptors for Classification of Archaeological 3D Models
    Roman-Rangel, Edgar
    Jimenez-Badillo, Diego
    Marchand-Maillet, Stephane
    PATTERN RECOGNITION (MCPR 2016), 2016, 9703 : 13 - 22
  • [8] Comparing local shape descriptors
    Heider, Paul
    Pierre-Pierre, Alain
    Li, Ruosi
    Mueller, Rolf
    Grimm, Cindy
    VISUAL COMPUTER, 2012, 28 (09): : 919 - 929
  • [9] Comparing local shape descriptors
    Paul Heider
    Alain Pierre-Pierre
    Ruosi Li
    Rolf Mueller
    Cindy Grimm
    The Visual Computer, 2012, 28 : 919 - 929
  • [10] Image searching and retrieving by invariant shape descriptors
    Sousan, WL
    Zhu, QM
    CISST'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, VOLS I AND II, 2000, : 15 - 21