SimMap: Similarity maps for scale invariant local shape descriptors

被引:4
|
作者
Roman-Rangel, Edgar [1 ]
Wang, Changhu [2 ]
Marchand-Maillet, Stephane [1 ]
机构
[1] Univ Geneva, Dept Comp Sci, Viper Grp, CH-1211 Geneva 4, Switzerland
[2] Microsoft Res Asia, Multimedia Search & Min Grp, Beijing, Peoples R China
基金
瑞士国家科学基金会;
关键词
Binary images; Local shape descriptors; Shape context; Characteristic scale; Similarity map; Shape detection;
D O I
10.1016/j.neucom.2015.06.093
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional approaches to estimate a scale invariant spatial scope for local image descriptors, a.k.a. characteristic scale, work well for intensity images. However, they fail when it comes to deal with binary images. We address this problem and propose a new method to estimate the characteristic scale of local shape descriptors. The proposed method extends the use of the distance map transform to produce similarity maps that approximate local intensity changes in binary images. We first validated our method evaluating the consistency of characteristic scales estimated across scaled instances of images; and then by comparing its performance, with respect to traditional methods, in the tasks of Content-Based Image Retrieval and shape detection in different datasets of binary images (shapes of Maya and Chinese hieroglyphs, and generic shapes). As shown by our results, the proposed similarity map produces characteristic scales that are more robust to scale variations, and leads to competitive results. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:888 / 898
页数:11
相关论文
共 50 条
  • [41] Locally rotation, contrast, and scale invariant descriptors for texture analysis
    Mellor, Matthew
    Hong, Byung-Woo
    Brady, Michael
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (01) : 52 - 61
  • [42] Scale-Invariant Line Descriptors for Wide Baseline Matching
    Verhagen, Bart
    Timofte, Radu
    Van Gool, Luc
    2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 493 - 500
  • [43] BINDING INVARIANT SHAPE DESCRIPTORS FOR OBJECT RECOGNITION - A NEURAL NET IMPLEMENTATION
    HUMMEL, JE
    BIEDERMAN, I
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1990, 28 (06) : 486 - 486
  • [44] Curvature maps for local shape comparison
    Gatzke, T
    Grimm, C
    Garland, M
    Zelinka, S
    INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDINGS, 2005, : 244 - 253
  • [45] Invariant morphological descriptors from otolith shape in environment automatic classification
    Hevia-Montiel, Nidiyare
    Perez-Gonzalez, Jorge
    Gallardo-Torres, Alfredo
    Badillo-Aleman, Maribel
    Chiappa-Carrara, Xavier
    JOURNAL OF APPLIED ICHTHYOLOGY, 2021, 37 (04) : 534 - 544
  • [46] Branch length similarity entropy-based descriptors for shape representation
    Kwon, Ohsung
    Lee, Sang-Hee
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 71 (10) : 727 - 732
  • [47] An Evaluation of Local Shape Descriptors in Probabilistic Volumetric Scenes
    Restrepo, Maria I.
    Mundy, Joseph L.
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [48] Accurate object detection using local shape descriptors
    Mohammad Anvaripour
    Hossein Ebrahimnezhad
    Pattern Analysis and Applications, 2015, 18 : 277 - 295
  • [49] Accurate object detection using local shape descriptors
    Anvaripour, Mohammad
    Ebrahimnezhad, Hossein
    PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 277 - 295
  • [50] Selecting distinctive 3D shape descriptors for similarity retrieval
    Shilane, Philip
    Funkhouser, Thomas
    IEEE INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS 2006, PROCEEDINGS, 2006, : 108 - +