Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers

被引:71
|
作者
Andringa, Anne-Marije [1 ]
Perrotta, Alberto [1 ,2 ]
de Peuter, Koen [1 ]
Knoops, Harm C. M. [1 ,3 ]
Kessels, Wilhelmus M. M. [1 ,4 ]
Creatore, Mariadriana [1 ,4 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Dutch Polymer Inst, NL-5600 AX Eindhoven, Netherlands
[3] Oxford Instruments Plasma Technol, Bristol BS49 4AP, Avon, England
[4] Solliance Solar Res, NL-5656 AE Eindhoven, Netherlands
关键词
atomic layer deposition; plasma; silicon nitride; moisture permeation barrier layers; ellipsometric porosimetry; calcium test; THIN-FILMS; ELLIPSOMETRIC POROSIMETRY; PERFORMANCE; OXIDE; OXYNITRIDE; COATINGS; TIME;
D O I
10.1021/acsami.5b06801
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Encapsulation of organic (opto-) electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2((NHBu)-Bu-t)(2) and with N-2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 degrees C up to 200 degrees C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (similar to 0.3 nm), ethanol (similar to 0.4 nm), and toluene (similar to 0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 degrees C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 degrees C. Intrinsic WVTR values in the range of 10(-6) g/m(2)/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness.
引用
收藏
页码:22525 / 22532
页数:8
相关论文
共 50 条
  • [41] Low-temperature atomic layer deposition of MoOx for silicon heterojunction solar cells
    Macco, B.
    Vos, M. F. J.
    Thissen, N. F. W.
    Bol, A. A.
    Kessels, W. M. M.
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2015, 9 (07): : 393 - 396
  • [42] Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers
    Rampelberg, Geert
    Devloo-Casier, Kilian
    Deduytsche, Davy
    Schaekers, Marc
    Blasco, Nicolas
    Detavernier, Christophe
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (11)
  • [43] ZnO Thin Films Fabricated by Plasma-Assisted Atomic Layer Deposition
    Kawamura, Yumi
    Hattori, Nozomu
    Miyatake, Naomasa
    Horita, Masahiro
    Uraoka, Yukiharu
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (04)
  • [44] Plasma-assisted atomic layer deposition of germanium antimony tellurium compounds
    Silinskas, Mindaugas
    Kalkofen, Bodo
    Balasubramanian, Ramasubramanian
    Batmanov, Anatoliy
    Burte, Edmund P.
    Harmgarth, Nicole
    Zoerner, Florian
    Edelmann, Frank T.
    Garke, Bernd
    Lisker, Marco
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02):
  • [45] Plasma-assisted atomic layer deposition of nanolaminates for gate dielectric applications
    Garces, Nelson Y.
    Meyer, David J.
    Wheeler, Virginia D.
    Liliental-Weber, Zuzanna
    Gaskill, David K.
    Eddy, Charles R., Jr.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2014, 32 (03):
  • [46] Plasma-Assisted Nanofabrication: The Potential and Challenges in Atomic Layer Deposition and Etching
    Chiappim, William
    Neto, Benedito Botan
    Shiotani, Michaela
    Karnopp, Julia
    Goncalves, Luan
    Chaves, Joao Pedro
    Sobrinho, Argemiro da Silva
    Leitao, Joaquim Pratas
    Fraga, Mariana
    Pessoa, Rodrigo
    [J]. NANOMATERIALS, 2022, 12 (19)
  • [47] Plasma-Assisted Atomic Layer Deposition of IrO2 for Neuroelectronics
    Di Palma, Valerio
    Pianalto, Andrea
    Perego, Michele
    Tallarida, Graziella
    Codegoni, Davide
    Fanciulli, Marco
    [J]. NANOMATERIALS, 2023, 13 (06)
  • [48] Plasma-assisted atomic layer deposition for energy conversion and storage devices
    Creatore, Mariadriana
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [49] Low temperature plasma enhanced chemical vapor deposition of silicon nitride and oxynitride layers
    Nallapati, G
    Ajmera, PK
    [J]. PHYSICS OF SEMICONDUCTOR DEVICES, VOLS 1 AND 2, 1998, 3316 : 573 - 579
  • [50] Low-temperature plasma-assisted growth of germanium nanorods
    Wang, Yu-Cian
    Chen, I-Chen
    [J]. CRYSTENGCOMM, 2014, 16 (14): : 2937 - 2943