Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers

被引:71
|
作者
Andringa, Anne-Marije [1 ]
Perrotta, Alberto [1 ,2 ]
de Peuter, Koen [1 ]
Knoops, Harm C. M. [1 ,3 ]
Kessels, Wilhelmus M. M. [1 ,4 ]
Creatore, Mariadriana [1 ,4 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Dutch Polymer Inst, NL-5600 AX Eindhoven, Netherlands
[3] Oxford Instruments Plasma Technol, Bristol BS49 4AP, Avon, England
[4] Solliance Solar Res, NL-5656 AE Eindhoven, Netherlands
关键词
atomic layer deposition; plasma; silicon nitride; moisture permeation barrier layers; ellipsometric porosimetry; calcium test; THIN-FILMS; ELLIPSOMETRIC POROSIMETRY; PERFORMANCE; OXIDE; OXYNITRIDE; COATINGS; TIME;
D O I
10.1021/acsami.5b06801
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Encapsulation of organic (opto-) electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2((NHBu)-Bu-t)(2) and with N-2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 degrees C up to 200 degrees C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (similar to 0.3 nm), ethanol (similar to 0.4 nm), and toluene (similar to 0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 degrees C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 degrees C. Intrinsic WVTR values in the range of 10(-6) g/m(2)/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness.
引用
收藏
页码:22525 / 22532
页数:8
相关论文
共 50 条
  • [21] Plasma-assisted atomic layer deposition of TiN films at low deposition temperature for high-aspect ratio applications
    Heil, SBS
    Langereis, E
    Roozeboom, F
    Kemmeren, A
    Pham, NP
    Sarro, PM
    van de Sanden, MCM
    Kessels, WMM
    [J]. Materials, Technology and Reliability of Advanced Interconnects-2005, 2005, 863 : 215 - 220
  • [22] Temperature dependence of silicon nitride deposited by remote plasma atomic layer deposition
    Jang, Woochool
    Jeon, Heeyoung
    Kang, Chunho
    Song, Hyoseok
    Park, Jingyu
    Kim, Hyunjung
    Seo, Hyungtak
    Leskela, Markku
    Jeon, Hyeongtag
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (09): : 2166 - 2171
  • [23] Deposition and characteristics of tantalum nitride films by plasma assisted atomic layer deposition as Cu diffusion barrier
    Na, KI
    Park, SJ
    Jeong, WC
    Kim, SH
    Bo, SE
    Bae, NJ
    Lee, JH
    [J]. MATERIALS, TECHNOLOGY AND RELIABILITY FOR ADVANCED INTERCONNECTS AND LOW-K DIELECTRICS-2003, 2003, 766 : 491 - 496
  • [24] A low-temperature solution for silicon nitride deposition
    Laxman, RK
    Anderson, TD
    Mestemacher, JA
    [J]. SOLID STATE TECHNOLOGY, 2000, 43 (04) : 79 - +
  • [25] Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges
    Profijt, H. B.
    Potts, S. E.
    van de Sanden, M. C. M.
    Kessels, W. M. M.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2011, 29 (05):
  • [26] Surface modification of polymers by plasma-assisted atomic layer deposition
    Kaariainen, T. O.
    Lehti, S.
    Kaariainen, M. -L.
    Cameron, D. C.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2011, 205 : S475 - S479
  • [27] Plasma-assisted atomic layer deposition of transition metals and their carbides
    Guo Z.
    Wang X.
    [J]. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2021, 51 (06): : 637 - 647
  • [28] Ion Bombardment during Plasma-Assisted Atomic Layer Deposition
    Profijt, H. B.
    Kessels, W. M. M.
    [J]. ATOMIC LAYER DEPOSITION APPLICATIONS 8, 2012, 50 (13): : 23 - 34
  • [29] Plasmonic titanium nitride via atomic layer deposition: A low-temperature route
    Fomra, Dhruv
    Secondo, Ray
    Ding, Kai
    Avrutin, Vitaliy
    Izyumskaya, Natalia
    Ozgur, Umit
    Kinsey, Nathaniel
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 127 (10)
  • [30] Low-temperature grown wurtzite InxGa1-xN thin films via hollow cathode plasma-assisted atomic layer deposition
    Haider, Ali
    Kizir, Seda
    Ozgit-Akgun, Cagla
    Goldenberg, Eda
    Leghari, Shahid Ali
    Okyay, Ali Kemal
    Biyikli, Necmi
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (37) : 9620 - 9630