Positively invariant subset for non-densely defined Cauchy problems

被引:1
|
作者
Magal, Pierre [1 ,2 ]
Seydi, Ousmane [3 ]
Wang, Feng-Bin [4 ,5 ]
机构
[1] Univ Bordeaux, IMB, UMR 5251, F-33400 Talence, France
[2] CNRS, IMB, UMR 5251, F-33400 Talence, France
[3] Ecole Polytech Thies, Dept Tronc Commun, Thies, Senegal
[4] Chang Gung Univ, Dept Nat Sci, Ctr Gen Educ, Taoyuan 333, Taiwan
[5] Chang Gung Mem Hosp, Keelung Branch, Community Med Res Ctr, Keelung 204, Taiwan
关键词
Semilinear differential equations; Non-dense domain; Integrated semigroup; Positively invariant subset; Age structured models; DIFFERENTIAL-EQUATIONS; INTEGRATED SEMIGROUPS; SETS;
D O I
10.1016/j.jmaa.2020.124600
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study develops a generalized notion of sub tangential condition to establish the positive invariance of a closed subset under the semiflow generated by a semi-linear non densely defined Cauchy problem. We also remark that the sufficient condition for the positivity of the semiflow implies our sub tangentiality condition. In other words, our sub tangential condition is more powerful since it can be used to show the positive invariance of a much larger class of closed subset. As an illustration we apply our results to an age-structured equation in L-p space which is only defined on a closed subset of L-p. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Hopf bifurcation for non-densely defined Cauchy problems
    Liu, Zhihua
    Magal, Pierre
    Ruan, Shigui
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02): : 191 - 222
  • [2] Hopf bifurcation for non-densely defined Cauchy problems
    Zhihua Liu
    Pierre Magal
    Shigui Ruan
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 191 - 222
  • [3] ON NON-DENSELY DEFINED INVARIANT HERMITIAN CONTRACTIONS
    Bekker, M.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2007, 13 (03): : 223 - 235
  • [4] Singular perturbation for an abstract non-densely defined Cauchy problem
    Arnaud Ducrot
    Pierre Magal
    Ousmane Seydi
    [J]. Journal of Evolution Equations, 2017, 17 : 1089 - 1128
  • [5] Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems
    Ducrot, A.
    Liu, Z.
    Magal, P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 501 - 518
  • [6] Variation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problems
    Magal, Pierre
    Seydi, Ousmane
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (05): : 1347 - 1389
  • [7] Singular perturbation for an abstract non-densely defined Cauchy problem
    Ducrot, Arnaud
    Magal, Pierre
    Seydi, Ousmane
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) : 1089 - 1128
  • [8] Abstract Cauchy problems for quasi-linear evolution equations with non-densely defined operators
    Matsumoto, Toshitaka
    Tanaka, Naoki
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 295 - 337
  • [9] Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models
    Magal, Pierre
    Seydi, Ousmane
    Wang, Feng-Bin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 450 - 481
  • [10] EXTENSIONS OF A NON-DENSELY DEFINED SYMMETRIC OPERATOR
    KOCHUBEI, AN
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1977, 18 (02) : 225 - 229