Abstract Cauchy problems for quasi-linear evolution equations with non-densely defined operators

被引:2
|
作者
Matsumoto, Toshitaka [2 ]
Tanaka, Naoki
机构
[1] Okayama Univ, Fac Sci, Dept Math, Okayama 7008530, Japan
[2] Hiroshima Univ, Grad Sch Sci, Dept Math & Life Sci, Higashihiroshima 7398526, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2007年 / 11卷 / 02期
关键词
abstract Cauchy problem; quasi-linear evolution equation; Hille-Yosida operator; mild solution; comparison function;
D O I
10.11650/twjm/1500404692
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the abstract Cauchy problem for quasi-linear evolution equation u'(t) = A(u(t))u(t), where {A(w); w is an element of W} is a family of closed linear operators in a real Banach space X such that D(A(w)) = Y for w is an element of W, and W is an open subset of another Banach space Y which is continuously embedded in X. The purpose of this paper is not only to establish a 'global' well-posedness theorem without assuming that Y is dense in X but also to propose a new type of dissipativity condition which is closely related with the continuous dependence of solutions on initial data.
引用
收藏
页码:295 / 337
页数:43
相关论文
共 50 条
  • [1] Abstract Cauchy problems for quasi-linear evolution equations in the sense of Hadamard
    Tanaka, N
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 89 : 123 - 160
  • [2] Singular perturbation for an abstract non-densely defined Cauchy problem
    Arnaud Ducrot
    Pierre Magal
    Ousmane Seydi
    [J]. Journal of Evolution Equations, 2017, 17 : 1089 - 1128
  • [3] Evolution operators generated by non-densely defined operators
    Oka, H
    Tanaka, N
    [J]. MATHEMATISCHE NACHRICHTEN, 2005, 278 (11) : 1285 - 1296
  • [4] Singular perturbation for an abstract non-densely defined Cauchy problem
    Ducrot, Arnaud
    Magal, Pierre
    Seydi, Ousmane
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) : 1089 - 1128
  • [5] Hopf bifurcation for non-densely defined Cauchy problems
    Liu, Zhihua
    Magal, Pierre
    Ruan, Shigui
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02): : 191 - 222
  • [6] Hopf bifurcation for non-densely defined Cauchy problems
    Zhihua Liu
    Pierre Magal
    Shigui Ruan
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 191 - 222
  • [7] Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems
    Ducrot, A.
    Liu, Z.
    Magal, P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 501 - 518
  • [8] Positively invariant subset for non-densely defined Cauchy problems
    Magal, Pierre
    Seydi, Ousmane
    Wang, Feng-Bin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [9] Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models
    Magal, Pierre
    Seydi, Ousmane
    Wang, Feng-Bin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 450 - 481
  • [10] Variation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problems
    Magal, Pierre
    Seydi, Ousmane
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (05): : 1347 - 1389