Variation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problems

被引:4
|
作者
Magal, Pierre [1 ,2 ]
Seydi, Ousmane [3 ]
机构
[1] Univ Bordeaux, IMB, UMR 5251, F-33076 Bordeaux, France
[2] CNRS, UMR 5251, IMB, F-33400 Talence, France
[3] Ecole Polytech Thies, Dept Tronc Commun, Thies 21001, Senegal
关键词
Nonautonomous Cauchy problem; non-densely defined Cauchy problem; exponential dichotomy; INTEGRATED SEMIGROUPS; TRICHOTOMY; OPERATORS; EQUATIONS; MANIFOLDS;
D O I
10.4153/S0008414X20000541
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend to the non-Hille-Yosida case a variation of constants formula for a nonautonomous and nonhomogeneous Cauchy problems first obtained by Guhring and Rabiger. By using this variation of constants formula, we derive a necessary and sufficient condition for the existence of an exponential dichotomy for the evolution family generated by the associated nonautonomous homogeneous problem. We also prove a persistence result of the exponential dichotomy for small perturbations. Finally, we illustrate our results by considering two examples. The first example is a parabolic equation with nonlocal and nonautonomous boundary conditions, and the second example is an age-structured model that is a hyperbolic equation.
引用
收藏
页码:1347 / 1389
页数:43
相关论文
共 48 条
  • [1] Hopf bifurcation for non-densely defined Cauchy problems
    Liu, Zhihua
    Magal, Pierre
    Ruan, Shigui
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02): : 191 - 222
  • [2] Hopf bifurcation for non-densely defined Cauchy problems
    Zhihua Liu
    Pierre Magal
    Shigui Ruan
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 191 - 222
  • [3] Positively invariant subset for non-densely defined Cauchy problems
    Magal, Pierre
    Seydi, Ousmane
    Wang, Feng-Bin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [4] Singular perturbation for an abstract non-densely defined Cauchy problem
    Arnaud Ducrot
    Pierre Magal
    Ousmane Seydi
    [J]. Journal of Evolution Equations, 2017, 17 : 1089 - 1128
  • [5] Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems
    Ducrot, A.
    Liu, Z.
    Magal, P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 501 - 518
  • [6] Singular perturbation for an abstract non-densely defined Cauchy problem
    Ducrot, Arnaud
    Magal, Pierre
    Seydi, Ousmane
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) : 1089 - 1128
  • [7] Abstract Cauchy problems for quasi-linear evolution equations with non-densely defined operators
    Matsumoto, Toshitaka
    Tanaka, Naoki
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 295 - 337
  • [8] Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models
    Magal, Pierre
    Seydi, Ousmane
    Wang, Feng-Bin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 450 - 481
  • [9] On Krein's formula in the case of non-densely defined symmetric operators
    Belyi, S
    Menon, G
    Tsekanovskii, E
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) : 598 - 616
  • [10] ON NON-DENSELY DEFINED INVARIANT HERMITIAN CONTRACTIONS
    Bekker, M.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2007, 13 (03): : 223 - 235