Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems

被引:68
|
作者
Ducrot, A. [2 ]
Liu, Z. [1 ,3 ,4 ]
Magal, P. [1 ,3 ]
机构
[1] Univ Le Havre, LMAH, F-100875 Le Havre, France
[2] Univ Bordeaux 2, CNRS, UMR 5466 MAB, F-33076 Bordeaux, France
[3] Univ Bordeaux 2, INRIA Futurs Anubis, F-33076 Bordeaux, France
[4] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
semigroups; integrated semigroups; essential growth rate; bounded perturbation; non-densely defined operators;
D O I
10.1016/j.jmaa.2007.09.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the essential growth rate of some class of semigroup generated by bounded perturbation of some non-densely defined problem. We extend some previous results due to Thieme [H.R. Thieme, Quasi-compact semigroups via bounded perturbation, in: Advances in Mathematical Population Dynamics-Molecules, Cells and Man, Houston, TX, 1995, in: Ser. Math. Biol. Med., vol. 6, World Sci. Publishing, River Edge, NJ, 1997, pp. 691-711] to a class of non-densely defined Cauchy problems in LP. In particular in the context the integrated semigroup is not operator norm locally Lipschitz continuous. We overcome the lack of Lipschitz continuity of the integrated semigroup by deriving some weaker properties that are sufficient to give information on the essential growth rate. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:501 / 518
页数:18
相关论文
共 50 条
  • [1] Singular perturbation for an abstract non-densely defined Cauchy problem
    Arnaud Ducrot
    Pierre Magal
    Ousmane Seydi
    [J]. Journal of Evolution Equations, 2017, 17 : 1089 - 1128
  • [2] Singular perturbation for an abstract non-densely defined Cauchy problem
    Ducrot, Arnaud
    Magal, Pierre
    Seydi, Ousmane
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) : 1089 - 1128
  • [3] Hopf bifurcation for non-densely defined Cauchy problems
    Liu, Zhihua
    Magal, Pierre
    Ruan, Shigui
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02): : 191 - 222
  • [4] Hopf bifurcation for non-densely defined Cauchy problems
    Zhihua Liu
    Pierre Magal
    Shigui Ruan
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 191 - 222
  • [5] Positively invariant subset for non-densely defined Cauchy problems
    Magal, Pierre
    Seydi, Ousmane
    Wang, Feng-Bin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [6] Abstract Cauchy problems for quasi-linear evolution equations with non-densely defined operators
    Matsumoto, Toshitaka
    Tanaka, Naoki
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 295 - 337
  • [7] Variation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problems
    Magal, Pierre
    Seydi, Ousmane
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (05): : 1347 - 1389
  • [8] Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models
    Magal, Pierre
    Seydi, Ousmane
    Wang, Feng-Bin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 450 - 481
  • [9] ON NON-DENSELY DEFINED INVARIANT HERMITIAN CONTRACTIONS
    Bekker, M.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2007, 13 (03): : 223 - 235
  • [10] EXTENSIONS OF A NON-DENSELY DEFINED SYMMETRIC OPERATOR
    KOCHUBEI, AN
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1977, 18 (02) : 225 - 229