Improved DIQKD protocols with finite-size analysis

被引:0
|
作者
Tan, Ernest Y. -Z. [1 ]
Sekatski, Pavel [2 ,3 ]
Schwonnek, Rene [5 ]
Renner, Renato [1 ]
Sangouard, Nicolas [4 ]
Lim, Charles C. -W. [6 ,7 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, Zurich, Switzerland
[2] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[3] Univ Geneva, Dept Appl Phys, Chemin Pinchat 22, CH-1211 Geneva, Switzerland
[4] Univ Paris Saclay, Inst Phys theor, CEA, CNRS, F-91191 Gif Sur Yvette, France
[5] Univ Siegen, Naturwissenschaftlich Tech Fak, Siegen, Germany
[6] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[7] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
来源
QUANTUM | 2022年 / 6卷
基金
瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
KEY; SECURITY; DISTILLATION; INFORMATION; RANDOMNESS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The security of finite-length keys is essential for the implementation of device-independent quantum key distribution (DIQKD). Presently, there are several finite-size DIQKD security proofs, but they are mostly focused on standard DIQKD protocols and do not directly apply to the recent improved DIQKD protocols based on noisy preprocessing, random key measurements, and modified CHSH inequalities. Here, we provide a general finite-size security proof that can simultaneously encompass these approaches, using tighter finite-size bounds than previous analyses. In doing so, we develop a method to compute tight lower bounds on the asymptotic keyrate for any such DIQKD protocol with binary inputs and outputs. With this, we show that positive asymptotic keyrates are achievable up to depolarizing noise values of 9.33%, exceeding all previously known noise thresholds. We also develop a modification to random-key-measurement protocols, using a pre-shared seed followed by a "seed recovery " step, which yields substantially higher net key generation rates by essentially removing the sifting factor. Some of our results may also improve the keyrates of device-independent randomness expansion.
引用
收藏
页码:1 / 63
页数:63
相关论文
共 50 条
  • [42] WAVELET ANALYSIS OF RADAR ECHO FROM FINITE-SIZE TARGETS
    KIM, HD
    LING, H
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (02) : 200 - 207
  • [43] CROSSOVER PHENOMENA AND FINITE-SIZE SCALING ANALYSIS OF NUMERICAL SIMULATIONS
    BINDER, K
    DEUTSCH, HP
    [J]. EUROPHYSICS LETTERS, 1992, 18 (08): : 667 - 672
  • [44] Cluster analysis and finite-size scaling for Ising spin systems
    Tomita, Y
    Okabe, Y
    Hu, CK
    [J]. PHYSICAL REVIEW E, 1999, 60 (03) : 2716 - 2720
  • [45] Finite-size analysis in neural network classification of critical phenomena
    Chertenkov V.
    Burovski E.
    Shchur L.
    [J]. Physical Review E, 2023, 108 (03)
  • [46] Cluster analysis of the Ising model and universal finite-size scaling
    Okabe, Y
    Kaneda, K
    Tomita, Y
    Kikuchi, M
    Hu, CK
    [J]. PHYSICA A, 2000, 281 (1-4): : 233 - 241
  • [47] Finite-size effects and finite-size scaling in time evolution during a colorless confining phase transition
    Cherif, Salah
    Ladrem, Madjid Lakhdar Hamou
    Alfull, Zainab Zaki Mohammed
    Alharbi, Rana Meshal
    Ahmed, M. A. A.
    [J]. PHYSICA SCRIPTA, 2021, 96 (10)
  • [48] On Thermodynamic Description of Finite-Size Multiferroics
    Starkov, Ivan A.
    Amirov, Abdulkarim A.
    Starkov, Alexander S.
    [J]. SHAPE MEMORY ALLOYS, SMA 2018, 2018, 9 : 167 - 173
  • [49] THERMOCAPILLARY FLOWS IN FINITE-SIZE SYSTEMS
    KUHLMANN, HC
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (10-11) : 145 - 173
  • [50] Finite-size effects in a supercooled liquid
    Doliwa, B
    Heuer, A
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (11) : S849 - S858