Improved DIQKD protocols with finite-size analysis

被引:0
|
作者
Tan, Ernest Y. -Z. [1 ]
Sekatski, Pavel [2 ,3 ]
Schwonnek, Rene [5 ]
Renner, Renato [1 ]
Sangouard, Nicolas [4 ]
Lim, Charles C. -W. [6 ,7 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, Zurich, Switzerland
[2] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[3] Univ Geneva, Dept Appl Phys, Chemin Pinchat 22, CH-1211 Geneva, Switzerland
[4] Univ Paris Saclay, Inst Phys theor, CEA, CNRS, F-91191 Gif Sur Yvette, France
[5] Univ Siegen, Naturwissenschaftlich Tech Fak, Siegen, Germany
[6] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[7] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
来源
QUANTUM | 2022年 / 6卷
基金
瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
KEY; SECURITY; DISTILLATION; INFORMATION; RANDOMNESS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The security of finite-length keys is essential for the implementation of device-independent quantum key distribution (DIQKD). Presently, there are several finite-size DIQKD security proofs, but they are mostly focused on standard DIQKD protocols and do not directly apply to the recent improved DIQKD protocols based on noisy preprocessing, random key measurements, and modified CHSH inequalities. Here, we provide a general finite-size security proof that can simultaneously encompass these approaches, using tighter finite-size bounds than previous analyses. In doing so, we develop a method to compute tight lower bounds on the asymptotic keyrate for any such DIQKD protocol with binary inputs and outputs. With this, we show that positive asymptotic keyrates are achievable up to depolarizing noise values of 9.33%, exceeding all previously known noise thresholds. We also develop a modification to random-key-measurement protocols, using a pre-shared seed followed by a "seed recovery " step, which yields substantially higher net key generation rates by essentially removing the sifting factor. Some of our results may also improve the keyrates of device-independent randomness expansion.
引用
收藏
页码:1 / 63
页数:63
相关论文
共 50 条
  • [21] DIFFUSION TO FINITE-SIZE TRAPS
    RICHARDS, PM
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (17) : 1838 - 1841
  • [22] FINITE-SIZE TESTS OF HYPERSCALING
    BINDER, K
    NAUENBERG, M
    PRIVMAN, V
    YOUNG, AP
    [J]. PHYSICAL REVIEW B, 1985, 31 (03): : 1498 - 1502
  • [23] Finite-Size Gravitational Microlenses
    Bromley, B. C.
    [J]. Astrophysical Journal, 467 (01):
  • [24] Finite-size effects on QGP
    Brink, DM
    Lo Monaco, L
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1998, 24 (04) : 867 - 882
  • [25] FINITE-SIZE EFFECTS IN A SANDPILE
    LIU, CH
    JAEGER, HM
    NAGEL, SR
    [J]. PHYSICAL REVIEW A, 1991, 43 (12): : 7091 - 7092
  • [26] FINITE-SIZE EFFECT IN INTERMITTENCY
    BOZEK, P
    PLOSZAJCZAK, M
    [J]. PHYSICS LETTERS B, 1991, 264 (1-2) : 204 - 206
  • [27] FINITE-SIZE RESCALING TRANSFORMATIONS
    DOSSANTOS, RR
    SNEDDON, L
    [J]. PHYSICAL REVIEW B, 1981, 23 (07) : 3541 - 3546
  • [28] Finite-size effects in microrheology
    Santamaria-Holek, I.
    Rubi, J. M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (06):
  • [29] FINITE-SIZE IMAGE ISOCHRONISM
    FANCHENKO, SD
    KOROBKIN, VV
    [J]. PHYSICS LETTERS A, 1982, 91 (03) : 112 - 113
  • [30] Crystalline finite-size topology
    Pacholski, Michal J.
    Cook, Ashley M.
    [J]. PHYSICAL REVIEW B, 2024, 109 (23)