Cluster analysis and finite-size scaling for Ising spin systems

被引:42
|
作者
Tomita, Y [1 ]
Okabe, Y
Hu, CK
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[2] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
关键词
D O I
10.1103/PhysRevE.60.2716
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (rn) in subgraphs with n percolating clusters, p(n)(m). We find that f(n)(c) and p(n)(m) have very good finite-size scaling behavior and that they have universal finite-size scaling functions for the model on square,plane triangular, and honeycomb lattices when aspect ratios of these lattices have the proportions 1:root 3/2:root 3. The complex structure of the magnetization distribution function p(m) for the system with large aspect ratio could be understood from the independent orientations of two or more percolation clusters in such a system. [S1063-651X(99)09609-9].
引用
收藏
页码:2716 / 2720
页数:5
相关论文
共 50 条
  • [1] Cluster analysis of the Ising model and universal finite-size scaling
    Okabe, Y
    Kaneda, K
    Tomita, Y
    Kikuchi, M
    Hu, CK
    PHYSICA A, 2000, 281 (1-4): : 233 - 241
  • [2] FINITE-SIZE SCALING ON THE ISING COEXISTENCE LINE
    GUPTA, S
    IRBACK, A
    NUCLEAR PHYSICS B, 1993, : 861 - 864
  • [3] FINITE-SIZE SCALING AT AN ISING TRICRITICAL POINT
    BEALE, PD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (06): : L335 - L339
  • [4] Is finite-size scaling universal for Ising models?
    Muller, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (04): : 585 - 589
  • [5] Finite-size scaling and damage spreading in Ising systems with multispin interactions
    Neves, UPC
    de Felicio, JRD
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 258 (1-2) : 211 - 220
  • [6] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Z. Merdan
    M. Bayirli
    A. Günen
    M. Bülbül
    International Journal of Theoretical Physics, 2016, 55 : 2031 - 2039
  • [7] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Merdan, Z.
    Bayirli, M.
    Gunen, A.
    Bulbul, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2031 - 2039
  • [8] FINITE-SIZE SCALING STUDY OF THE TWO-DIMENSIONAL ISING SPIN-GLASS
    HUSE, DA
    MORGENSTERN, I
    PHYSICAL REVIEW B, 1985, 32 (05): : 3032 - 3034
  • [9] Finite-size scaling in two-dimensional Ising spin-glass models
    Toldin, Francesco Parisen
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [10] Finite-size critical scaling in Ising spin glasses in the mean-field regime
    Aspelmeier, T.
    Katzgraber, Helmut G.
    Larson, Derek
    Moore, M. A.
    Wittmann, Matthew
    Yeo, Joonhyun
    PHYSICAL REVIEW E, 2016, 93 (03)