The fractals are obtained by using the model of diffusion-limited aggregation (DLA) for 40 ≤ L ≤ 240. The two-dimensional Ising model is simulated on the Creutz cellular automaton for 40 ≤ L ≤ 240. The critical exponents and the fractal dimensions are computed to be β = 0.124(8), γ = 1.747(10), α = 0.081(21), δ = 14.994(11), η = 0.178(10), ν = 0.960(23) and dfβ=1.876(8),dfγ=3.747(10),dfα=2.081(68),dfδ=1.940(22)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$d_{f}^{\beta } =1.876(8), \,d_{f}^{\gamma } =3.747(10), \,d_{f}^{\alpha } =2.081(68), \,d_{f}^{\delta } =1.940(22)$\end{document}, dfη=2.178(10)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$d_{f}^{\eta } =2.178(10)$\end{document}, dfν=2.960(22)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$d_{f}^{\nu } =2.960(22)$\end{document}, which are consistent with the theoretical values of β = 0.125, γ = 1.75, α = 0, δ = 15, η = 0.25, ν = 1 and dfβ=1.875,dfγ=3.75,dfα=2,dfδ=1.933,dfη=2.25,dfν=3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$d_{f}^{\beta } =1.875, \,d_{f}^{\gamma } =3.75, \,d_{f}^{\alpha } =2, \,d_{f}^{\delta } =1.933, \,d_{f}^{\eta } =2.25, \,d_{f}^{\nu } =3$\end{document}.