The Finite-Size Scaling Study of the Ising Model for the Fractals

被引:0
|
作者
Z. Merdan
M. Bayirli
A. Günen
M. Bülbül
机构
[1] Gazi University,Faculty of Arts and Sciences, Department of Physics
[2] Balikesir University,Faculty of Arts and Sciences, Department of Physics
关键词
Ising model; Finite-size scaling; Cellular automaton; Fractals;
D O I
暂无
中图分类号
学科分类号
摘要
The fractals are obtained by using the model of diffusion-limited aggregation (DLA) for 40 ≤ L ≤ 240. The two-dimensional Ising model is simulated on the Creutz cellular automaton for 40 ≤ L ≤ 240. The critical exponents and the fractal dimensions are computed to be β = 0.124(8), γ = 1.747(10), α = 0.081(21), δ = 14.994(11), η = 0.178(10), ν = 0.960(23) and dfβ=1.876(8),dfγ=3.747(10),dfα=2.081(68),dfδ=1.940(22)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{f}^{\beta } =1.876(8), \,d_{f}^{\gamma } =3.747(10), \,d_{f}^{\alpha } =2.081(68), \,d_{f}^{\delta } =1.940(22)$\end{document}, dfη=2.178(10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{f}^{\eta } =2.178(10)$\end{document}, dfν=2.960(22)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{f}^{\nu } =2.960(22)$\end{document}, which are consistent with the theoretical values of β = 0.125, γ = 1.75, α = 0, δ = 15, η = 0.25, ν = 1 and dfβ=1.875,dfγ=3.75,dfα=2,dfδ=1.933,dfη=2.25,dfν=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{f}^{\beta } =1.875, \,d_{f}^{\gamma } =3.75, \,d_{f}^{\alpha } =2, \,d_{f}^{\delta } =1.933, \,d_{f}^{\eta } =2.25, \,d_{f}^{\nu } =3$\end{document}.
引用
收藏
页码:2031 / 2039
页数:8
相关论文
共 50 条
  • [1] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Merdan, Z.
    Bayirli, M.
    Gunen, A.
    Bulbul, M.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2031 - 2039
  • [2] Critical properties of the Ising model on Sierpinski fractals: A finite-size scaling-analysis approach
    Carmona, JM
    Marconi, UMB
    Ruiz-Lorenzo, JJ
    Tarancon, A
    [J]. PHYSICAL REVIEW B, 1998, 58 (21) : 14387 - 14396
  • [3] The Finite-Size Scaling Study of Five-Dimensional Ising Model
    Merdan, Z.
    Aras, N.
    Kurkcu, C.
    [J]. ACTA PHYSICA POLONICA A, 2016, 129 (06) : 1100 - 1104
  • [4] FINITE-SIZE SCALING FOR TRANSIENT SIMILARITY AND FRACTALS
    SUZUKI, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (06): : 1397 - 1400
  • [5] Finite-size scaling in the transverse Ising model on a square lattice
    Hamer, CJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (38): : 6683 - 6698
  • [6] A FINITE-SIZE SCALING STUDY OF THE 4D ISING-MODEL
    SANCHEZVELASCO, E
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (14): : 5033 - 5038
  • [7] FINITE-SIZE SCALING APPROACH TO THE KINETIC ISING-MODEL
    TAKANO, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (02): : 493 - 507
  • [8] Finite-size scaling of the 5D Ising model
    Mon, KK
    [J]. EUROPHYSICS LETTERS, 1996, 34 (06): : 399 - 404
  • [9] Cluster analysis of the Ising model and universal finite-size scaling
    Okabe, Y
    Kaneda, K
    Tomita, Y
    Kikuchi, M
    Hu, CK
    [J]. PHYSICA A, 2000, 281 (1-4): : 233 - 241
  • [10] FINITE-SIZE SCALING OF THE ISING-MODEL IN 4 DIMENSIONS
    LAI, PY
    MON, KK
    [J]. PHYSICAL REVIEW B, 1990, 41 (13) : 9257 - 9263