Universal Fast-Flux Control of a Coherent, Low-Frequency Qubit

被引:96
|
作者
Zhang, Helin [1 ,2 ]
Chakram, Srivatsan [1 ,2 ]
Roy, Tanay [1 ,2 ]
Earnest, Nathan [1 ,2 ,5 ]
Lu, Yao [1 ,2 ,6 ]
Huang, Ziwen [3 ]
Koch, Jens [3 ]
Schuster, David, I [1 ,2 ,4 ]
Weiss, D. K. [3 ]
机构
[1] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[4] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[5] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[6] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
来源
PHYSICAL REVIEW X | 2021年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
QUANTUM; DYNAMICS;
D O I
10.1103/PhysRevX.11.011010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The heavy-fluxonium circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the flux-frustration point. However, the suppressed charge matrix elements and low transition frequency make it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to read out the qubit state and to initialize the qubit with 97% fidelity corresponding to cooling it to 190 mu K. Instead of using standard microwave pulses, we control the qubit only with fast-flux pulses, generating control fields much larger than the qubit frequency. We develop a universal set of gates based on nonadiabatic Landau-Zener transitions that act in 20-60 ns, less than the single-qubit Larmor period. We measure qubit coherence of T-1, T-2e similar to 300 mu s for a fluxonium in a 2D architecture and realize single-qubit gates with an average gate fidelity of 99.8% as characterized by randomized benchmarking.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Efficient fast multipole method for low-frequency scattering
    Darve, E
    Havé, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (01) : 341 - 363
  • [42] Qubit decoherence under two-axis coupling to low-frequency noises
    Ramon, Guy
    Cywinski, Lukasz
    PHYSICAL REVIEW B, 2022, 105 (04)
  • [43] CREATING POLOIDAL FLUX IN A TOKAMAK PLASMA WITH LOW-FREQUENCY WAVES
    KIRKWOOD, RK
    CAPEWELL, DL
    BELLAN, PM
    PHYSICS LETTERS A, 1993, 180 (03) : 269 - 274
  • [44] SMALL LOW-FREQUENCY MAGNETOELECTRIC LIGHT-FLUX MODULATOR
    ZYKOV, BN
    KARPOV, AI
    ROZHIN, VV
    MATVEEV, AG
    LOGINOV, VN
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1993, 60 (09): : 648 - 649
  • [45] Geometrical dependence of the low-frequency noise in superconducting flux qubits
    Lanting, T.
    Berkley, A. J.
    Bumble, B.
    Bunyk, P.
    Fung, A.
    Johansson, J.
    Kaul, A.
    Kleinsasser, A.
    Ladizinsky, E.
    Maibaum, F.
    Harris, R.
    Johnson, M. W.
    Tolkacheva, E.
    Amin, M. H. S.
    PHYSICAL REVIEW B, 2009, 79 (06):
  • [46] Microscopic origin of low-frequency flux noise in Josephson circuits
    Faoro, Lara
    Ioffe, Lev B.
    PHYSICAL REVIEW LETTERS, 2008, 100 (22)
  • [47] A MECHANISM FOR THE CONTROL OF LOW-FREQUENCY REPETITIVE FIRING
    PARTRIDGE, LD
    CELLULAR AND MOLECULAR NEUROBIOLOGY, 1982, 2 (01) : 33 - 45
  • [48] Control of low-frequency oscillation in a Hall thruster
    Furukawa, T
    Miyasaka, T
    Fujiwara, T
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2001, 44 (145) : 164 - 170
  • [49] STACKING HORNS FOR CONTROL OF LOW-FREQUENCY DIRECTIVITY
    BOLIVER, P
    GILLIOM, JR
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 1973, 21 (09): : 755 - 755
  • [50] Low-Frequency Oscillations and Control of the Motor Output
    Lodha, Neha
    Christou, Evangelos A.
    FRONTIERS IN PHYSIOLOGY, 2017, 8