Universal Fast-Flux Control of a Coherent, Low-Frequency Qubit

被引:96
|
作者
Zhang, Helin [1 ,2 ]
Chakram, Srivatsan [1 ,2 ]
Roy, Tanay [1 ,2 ]
Earnest, Nathan [1 ,2 ,5 ]
Lu, Yao [1 ,2 ,6 ]
Huang, Ziwen [3 ]
Koch, Jens [3 ]
Schuster, David, I [1 ,2 ,4 ]
Weiss, D. K. [3 ]
机构
[1] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[4] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[5] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[6] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
来源
PHYSICAL REVIEW X | 2021年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
QUANTUM; DYNAMICS;
D O I
10.1103/PhysRevX.11.011010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The heavy-fluxonium circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the flux-frustration point. However, the suppressed charge matrix elements and low transition frequency make it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to read out the qubit state and to initialize the qubit with 97% fidelity corresponding to cooling it to 190 mu K. Instead of using standard microwave pulses, we control the qubit only with fast-flux pulses, generating control fields much larger than the qubit frequency. We develop a universal set of gates based on nonadiabatic Landau-Zener transitions that act in 20-60 ns, less than the single-qubit Larmor period. We measure qubit coherence of T-1, T-2e similar to 300 mu s for a fluxonium in a 2D architecture and realize single-qubit gates with an average gate fidelity of 99.8% as characterized by randomized benchmarking.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Low-frequency characterization of quantum tunneling in flux qubits
    Greenberg, YS
    Izmalkov, A
    Grajcar, M
    Il'ichev, E
    Krech, W
    Meyer, HG
    Amin, MHS
    van den Brink, AM
    PHYSICAL REVIEW B, 2002, 66 (21) : 1 - 6
  • [32] Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits
    Madsen, M. J.
    Moehring, D. L.
    Maunz, P.
    Kohn, R. N., Jr.
    Duan, L. -M.
    Monroe, C.
    PHYSICAL REVIEW LETTERS, 2006, 97 (04)
  • [33] First Map of Coherent Low-Frequency Continuum Radiation in the Sky
    Fullekrug, Martin
    Koh, Kuang
    Liu, Zhongjian
    Mezentsev, Andrew
    RADIO SCIENCE, 2019, 54 (01) : 44 - 59
  • [34] LOW-FREQUENCY COHERENT FLUCTUATIONS IN THE PROTO-CLEO TORSATRON
    HARRIS, JH
    TALMADGE, JN
    MANTEI, TD
    SHOHET, JL
    NUCLEAR FUSION, 1984, 24 (02) : 159 - 168
  • [35] Low-Frequency Coherent Raman Imaging Robust to Optical Scattering
    Smith, David R.
    Wilson, Jesse W.
    Shivkumar, Siddarth
    Rigneault, Herve
    Bartels, Randy A.
    CHEMICAL & BIOMEDICAL IMAGING, 2024, 2 (08): : 584 - 591
  • [36] Parametric Frequency Converters and Coherent Light Sources with Relatively Low-Frequency Feeding
    Torchigin, V. P.
    LASER PHYSICS, 1993, 3 (06) : 1109 - 1113
  • [37] On the coherent components of low-frequency ambient noise in the Indian Ocean
    Sabra, Karim G.
    Fried, Stephanie
    Kuperman, W. A.
    Prior, Mark
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 133 (01): : EL20 - EL25
  • [38] Fast Stator Flux Trajectory Control for PMSM Operating Under Low Switching Frequency
    Zhang, Di
    Wang, Chenchen
    Zhou, Minglei
    You, Xiaojie
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (05) : 4387 - 4395
  • [39] Fast Stator Flux Trajectory Control for PMSM Operating Under Low Switching Frequency
    Zhang, Di
    Wang, Chenchen
    Zhou, Minglei
    You, Xiaojie
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 71 (05) : 4387 - 4395
  • [40] Fast multipole method for low-frequency electromagnetic scattering
    Darve, E
    Havé, P
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1299 - 1302