Universal Fast-Flux Control of a Coherent, Low-Frequency Qubit

被引:96
|
作者
Zhang, Helin [1 ,2 ]
Chakram, Srivatsan [1 ,2 ]
Roy, Tanay [1 ,2 ]
Earnest, Nathan [1 ,2 ,5 ]
Lu, Yao [1 ,2 ,6 ]
Huang, Ziwen [3 ]
Koch, Jens [3 ]
Schuster, David, I [1 ,2 ,4 ]
Weiss, D. K. [3 ]
机构
[1] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[4] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[5] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[6] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
来源
PHYSICAL REVIEW X | 2021年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
QUANTUM; DYNAMICS;
D O I
10.1103/PhysRevX.11.011010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The heavy-fluxonium circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the flux-frustration point. However, the suppressed charge matrix elements and low transition frequency make it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to read out the qubit state and to initialize the qubit with 97% fidelity corresponding to cooling it to 190 mu K. Instead of using standard microwave pulses, we control the qubit only with fast-flux pulses, generating control fields much larger than the qubit frequency. We develop a universal set of gates based on nonadiabatic Landau-Zener transitions that act in 20-60 ns, less than the single-qubit Larmor period. We measure qubit coherence of T-1, T-2e similar to 300 mu s for a fluxonium in a 2D architecture and realize single-qubit gates with an average gate fidelity of 99.8% as characterized by randomized benchmarking.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Fast universal control of an oscillator with weak dispersive coupling to a qubit
    Eickbusch, Alec
    Sivak, Volodymyr
    Ding, Andy Z.
    Elder, Salvatore S.
    Jha, Shantanu R.
    Venkatraman, Jayameenakshi
    Royer, Baptiste
    Girvin, S. M.
    Schoelkopf, Robert J.
    Devoret, Michel H.
    NATURE PHYSICS, 2022, 18 (12) : 1464 - 1469
  • [12] Fast universal control of an oscillator with weak dispersive coupling to a qubit
    Alec Eickbusch
    Volodymyr Sivak
    Andy Z. Ding
    Salvatore S. Elder
    Shantanu R. Jha
    Jayameenakshi Venkatraman
    Baptiste Royer
    S. M. Girvin
    Robert J. Schoelkopf
    Michel H. Devoret
    Nature Physics, 2022, 18 : 1464 - 1469
  • [13] NATURE OF LOW-FREQUENCY NOISE IN COHERENT LIGHT
    KUZNETSOVA, EM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1975, (03): : 40 - 43
  • [14] MOBILE COHERENT LOW-FREQUENCY ACOUSTIC RANGE
    SPINDEL, RC
    PORTER, RP
    WEBB, DC
    IEEE JOURNAL OF OCEANIC ENGINEERING, 1977, 2 (04) : 331 - 337
  • [15] Low-frequency coherent structures in turbulent flows
    Schwarze, Ruediger
    Obermeier, Rank
    PROGRESS IN TURBULENCE II, 2007, 109 : 131 - +
  • [16] FAST RESPONSE LOW-FREQUENCY VOLTMETER
    FIELD, BF
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1978, 27 (04) : 368 - 372
  • [17] Low-Frequency Learning and Fast Adaptation in Model Reference Adaptive Control
    Yucelen, Tansel
    Haddad, Wassim M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (04) : 1080 - 1085
  • [18] Low-frequency variations of the ion flux in the magnetosheath
    Nemecek, Z
    Safránková, J
    Zastenker, GN
    Pisoft, P
    Jelínek, K
    PLANETARY AND SPACE SCIENCE, 2002, 50 (5-6) : 567 - 575
  • [19] Decay features of coherent oscillations observed in a superconducting qubit manipulated by fast flux pulses
    Chiarello, F.
    Castellano, M. G.
    Cosmelli, C.
    Torrioli, G.
    SUPERCONDUCTIVITY CENTENNIAL CONFERENCE 2011, 2012, 36 : 53 - 58
  • [20] Effects of low-frequency noise in driven coherent nanodevices
    Falci, G.
    Berritta, M.
    Russo, A.
    D'Arrigo, A.
    Paladino, E.
    PHYSICA SCRIPTA, 2012, T151