Quantile regression with monotonicity restrictions using P-splines and the L1-norm

被引:33
|
作者
Bollaerts, Kaatje [1 ]
Eilers, Paul H. C. [1 ]
Aerts, Marc [1 ]
机构
[1] Univ Hasselt, Ctr Stat, B-3590 Diepenbeek, Belgium
关键词
growth curves; interior point; L-1-norm; monotonicity; P-splines; quantile regression;
D O I
10.1191/1471082X06st118oa
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is an alternative to OLS regression. In quantile regression, the sum of absolute deviations or the L-1-norm is minimized, whereas the sum of squared deviations or the L-2-norm is minimized in OLS regression. Quantile regression has the advantage over OLS-regression of being more robust to outlying observations. Furthermore, quantile regression provides information complementing the information provided by OLS-regression. In this study, a non-parametric approach to quantile regression is presented, which constrains the estimated-quanti le function to be monotone increasing. In particular, P-splines with an additional asymmetric penalty enforcing monotonicity are used within an L-1-framework. This can be translated into a linear programming problem, which will be solved using an interior point algorithm. As an illustration, the presented approach will be applied to estimate quantile growth curves and quantile antibody levels as a function of age.
引用
收藏
页码:189 / 207
页数:19
相关论文
共 50 条
  • [41] Supporting vectors for the l1-norm and the l∞-norm and an application
    Sanchez-Alzola, Alberto
    Garcia-Pacheco, Francisco Javier
    Naranjo-Guerra, Enrique
    Moreno-Pulido, Soledad
    [J]. MATHEMATICAL SCIENCES, 2021, 15 (02) : 173 - 187
  • [42] Parsimonious time series clustering using P-splines
    Iorio, Carmela
    Frasso, Gianluca
    D'Ambrosio, Antonio
    Siciliano, Roberta
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 52 : 26 - 38
  • [43] Linearized alternating directions method for l1-norm inequality constrained l1-norm minimization
    Cao, Shuhan
    Xiao, Yunhai
    Zhu, Hong
    [J]. APPLIED NUMERICAL MATHEMATICS, 2014, 85 : 142 - 153
  • [44] Variable Selection in Additive Models Using P-Splines
    Antoniadis, Anestis
    Gijbels, Irene
    Verhasselt, Anneleen
    [J]. TECHNOMETRICS, 2012, 54 (04) : 425 - 438
  • [45] Comparison of l1-Norm SVR and Sparse Coding Algorithms for Linear Regression
    Zhang, Qingtian
    Hu, Xiaolin
    Zhang, Bo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (08) : 1828 - 1833
  • [46] Testing the monotonicity or convexity of a function using regression splines
    Wang, Jianqiang C.
    Meyer, Mary C.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (01): : 89 - 107
  • [47] MRPP TESTS IN L1-NORM
    TRACY, DS
    KHAN, KA
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 373 - 380
  • [48] l1-norm coherence of assistance
    Zhao, Ming-Jing
    Ma, Teng
    Quan, Quan
    Fan, Heng
    Pereira, Rajesh
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [49] L1-Norm RESCAL Decomposition
    Tsitsikas, Yorgos
    Chachlakis, Dimitris G.
    Papalexakis, Evangelos E.
    Markopoulos, Panos P.
    [J]. 2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 940 - 944
  • [50] The L1-norm of a trigonometric sum
    Éminyan, KM
    [J]. MATHEMATICAL NOTES, 2004, 76 (1-2) : 124 - 132