Parsimonious time series clustering using P-splines

被引:23
|
作者
Iorio, Carmela [1 ]
Frasso, Gianluca [2 ]
D'Ambrosio, Antonio [1 ]
Siciliano, Roberta [3 ]
机构
[1] Univ Naples Federico II, Dept Econ & Stat, Via Cinthia, I-80126 Naples, Italy
[2] Univ Liege, Fac Sci Sociales, Pl Orateurs 3, B-4000 Liege, Belgium
[3] Univ Naples Federico II, Dept Ind Engn, Piazzale Tecchio, I-80125 Naples, Italy
关键词
Clustering algorithms; P-splines; Time series; GENE-EXPRESSION; ALGORITHM;
D O I
10.1016/j.eswa.2016.01.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a parsimonious model-based framework for clustering time course data. In these applications the computational burden becomes often an issue due to the large number of available observations. The measured time series can also be very noisy and sparse and an appropriate model describing them can be hard to define. We propose to model the observed measurements by using P-spline smoothers and then to cluster the functional objects as summarized by the optimal spline coefficients. According to the characteristics of the observed measurements, our proposal can be combined with any suitable clustering method. In this paper we provide applications based on non-hierarchical clustering algorithms. We evaluate the accuracy and the efficiency of our proposal by simulations and by analyzing two real data examples. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 50 条
  • [1] A Fast Weighted Fuzzy C-Medoids Clustering for Time Series Data Based on P-Splines
    Xu, Jiucheng
    Hou, Qinchen
    Qu, Kanglin
    Sun, Yuanhao
    Meng, Xiangru
    [J]. SENSORS, 2022, 22 (16)
  • [2] Variable selection using P-splines
    Gijbels, Irene
    Verhasselt, Anneleen
    Vrinssen, Inge
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2015, 7 (01): : 1 - 20
  • [3] P-SPLINES USING DERIVATIVE INFORMATION
    Calderon, Christopher P.
    Martinez, Josue G.
    Carroll, Raymond J.
    Sorensen, Danny C.
    [J]. MULTISCALE MODELING & SIMULATION, 2010, 8 (04): : 1562 - 1580
  • [4] P-Splines Based Clustering as a General Framework: Some Applications Using Different Clustering Algorithms
    Iorio, Carmela
    Frasso, Gianluca
    D'Ambrosio, Antonio
    Siciliano, Roberta
    [J]. CLASSIFICATION, (BIG) DATA ANALYSIS AND STATISTICAL LEARNING, 2018, : 183 - 190
  • [5] Bayesian P-splines
    Lang, S
    Brezger, A
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (01) : 183 - 212
  • [6] Some identities and P-splines
    Dem'yanovich, Yu.K.
    Petrov, V.F.
    [J]. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 2002, (02): : 5 - 9
  • [7] LIMITS OF HK,P-SPLINES
    CHUI, CK
    SMITH, PW
    WARD, JD
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (03) : 563 - 565
  • [8] Twenty years of P-splines
    Eilers, Paul H. C.
    Marx, Brian D.
    Durban, Maria
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2015, 39 (02) : 149 - 186
  • [9] Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data
    Coffey, N.
    Hinde, J.
    Holian, E.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 14 - 29
  • [10] Variable Selection in Additive Models Using P-Splines
    Antoniadis, Anestis
    Gijbels, Irene
    Verhasselt, Anneleen
    [J]. TECHNOMETRICS, 2012, 54 (04) : 425 - 438