P-SPLINES USING DERIVATIVE INFORMATION

被引:8
|
作者
Calderon, Christopher P. [1 ]
Martinez, Josue G. [2 ]
Carroll, Raymond J. [2 ]
Sorensen, Danny C. [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
来源
MULTISCALE MODELING & SIMULATION | 2010年 / 8卷 / 04期
基金
美国国家科学基金会;
关键词
Penalized-splines; semiparametric regression; time-inhomogeneous stochastic differential equation modeling; MOLECULAR-DYNAMICS; DIFFUSION-PROCESSES; DNA-MOLECULES; FORCE; MODELS;
D O I
10.1137/090768102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Time series associated with single-molecule experiments and/or simulations contain a wealth of multiscale information about complex biomolecular systems. We demonstrate how a collection of Penalized-splines (P-splines) can be useful in quantitatively summarizing such data. In this work, functions estimated using P-splines are associated with stochastic differential equations (SDEs). It is shown how quantities estimated in a single SDE summarize fast-scale phenomena, whereas variation between curves associated with different SDEs partially reflects noise induced by motion evolving on a slower time scale. P-splines assist in "semiparametrically" estimating nonlinear SDEs in situations where a time-dependent external force is applied to a single-molecule system. The P-splines introduced simultaneously use function and derivative scatterplot information to refine curve estimates. We refer to the approach as the PuDI (P-splines using Derivative Information) method. It is shown how generalized least squares ideas fit seamlessly into the PuDI method. Applications demonstrating how utilizing uncertainty information/approximations along with generalized least squares techniques improve PuDI fits are presented. Although the primary application here is in estimating nonlinear SDEs, the PuDI method is applicable to situations where both unbiased function and derivative estimates are available.
引用
收藏
页码:1562 / 1580
页数:19
相关论文
共 50 条
  • [1] P-SPLINES USING DERIVATIVE INFORMATION (vol 8, pg 1562, 2010)
    Calderon, Christopher P.
    Martinez, Josue G.
    Carroll, Raymond J.
    Sorensen, Danny C.
    [J]. MULTISCALE MODELING & SIMULATION, 2010, 8 (05): : 2097 - 2097
  • [2] Derivative curve estimation in longitudinal studies using P-splines
    Hernandez, Maria Alejandra
    Lee, Dae-Jin
    Rodriguez-Alvarez, Maria Xose
    Durban, Maria
    [J]. STATISTICAL MODELLING, 2023, 23 (5-6) : 424 - 440
  • [3] Variable selection using P-splines
    Gijbels, Irene
    Verhasselt, Anneleen
    Vrinssen, Inge
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2015, 7 (01): : 1 - 20
  • [4] Bayesian P-splines
    Lang, S
    Brezger, A
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (01) : 183 - 212
  • [5] Some identities and P-splines
    Dem'yanovich, Yu.K.
    Petrov, V.F.
    [J]. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 2002, (02): : 5 - 9
  • [6] Parsimonious time series clustering using P-splines
    Iorio, Carmela
    Frasso, Gianluca
    D'Ambrosio, Antonio
    Siciliano, Roberta
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 52 : 26 - 38
  • [7] LIMITS OF HK,P-SPLINES
    CHUI, CK
    SMITH, PW
    WARD, JD
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (03) : 563 - 565
  • [8] Twenty years of P-splines
    Eilers, Paul H. C.
    Marx, Brian D.
    Durban, Maria
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2015, 39 (02) : 149 - 186
  • [9] Variable Selection in Additive Models Using P-Splines
    Antoniadis, Anestis
    Gijbels, Irene
    Verhasselt, Anneleen
    [J]. TECHNOMETRICS, 2012, 54 (04) : 425 - 438
  • [10] Practical Smoothing: The Joys of P-splines
    Podgorski, Krzysztof
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2022, 90 (01) : 191 - 192