P-SPLINES USING DERIVATIVE INFORMATION

被引:8
|
作者
Calderon, Christopher P. [1 ]
Martinez, Josue G. [2 ]
Carroll, Raymond J. [2 ]
Sorensen, Danny C. [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
来源
MULTISCALE MODELING & SIMULATION | 2010年 / 8卷 / 04期
基金
美国国家科学基金会;
关键词
Penalized-splines; semiparametric regression; time-inhomogeneous stochastic differential equation modeling; MOLECULAR-DYNAMICS; DIFFUSION-PROCESSES; DNA-MOLECULES; FORCE; MODELS;
D O I
10.1137/090768102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Time series associated with single-molecule experiments and/or simulations contain a wealth of multiscale information about complex biomolecular systems. We demonstrate how a collection of Penalized-splines (P-splines) can be useful in quantitatively summarizing such data. In this work, functions estimated using P-splines are associated with stochastic differential equations (SDEs). It is shown how quantities estimated in a single SDE summarize fast-scale phenomena, whereas variation between curves associated with different SDEs partially reflects noise induced by motion evolving on a slower time scale. P-splines assist in "semiparametrically" estimating nonlinear SDEs in situations where a time-dependent external force is applied to a single-molecule system. The P-splines introduced simultaneously use function and derivative scatterplot information to refine curve estimates. We refer to the approach as the PuDI (P-splines using Derivative Information) method. It is shown how generalized least squares ideas fit seamlessly into the PuDI method. Applications demonstrating how utilizing uncertainty information/approximations along with generalized least squares techniques improve PuDI fits are presented. Although the primary application here is in estimating nonlinear SDEs, the PuDI method is applicable to situations where both unbiased function and derivative estimates are available.
引用
收藏
页码:1562 / 1580
页数:19
相关论文
共 50 条
  • [41] P-splines regression smoothing and difference type of penalty
    Gijbels, I.
    Verhasselt, A.
    [J]. STATISTICS AND COMPUTING, 2010, 20 (04) : 499 - 511
  • [42] Quantile regression with monotonicity restrictions using P-splines and the L1-norm
    Bollaerts, Kaatje
    Eilers, Paul H. C.
    Aerts, Marc
    [J]. STATISTICAL MODELLING, 2006, 6 (03) : 189 - 207
  • [43] Multidimensional adaptive P-splines with application to neurons' activity studies
    Xose Rodriguez-Alvarez, Maria
    Durban, Maria
    Eilers, Paul H. C.
    Lee, Dae-Jin
    Gonzalez, Francisco
    [J]. BIOMETRICS, 2023, 79 (03) : 1972 - 1985
  • [44] Kriging and splines with derivative information
    Mardia, KV
    Kent, JT
    Goodall, CR
    Little, JA
    [J]. BIOMETRIKA, 1996, 83 (01) : 207 - 221
  • [45] Penalized complexity priors for degrees of freedom in Bayesian P-splines
    Ventrucci, Massimo .
    Rue, Havard
    [J]. STATISTICAL MODELLING, 2016, 16 (06) : 429 - 453
  • [46] P-splines quantile regression estimation in varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    [J]. TEST, 2014, 23 (01) : 153 - 194
  • [47] P-splines with an l1 penalty for repeated measures
    Segal, Brian D.
    Elliott, Michael R.
    Braun, Thomas
    Jiang, Hui
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3554 - 3600
  • [48] MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines
    Camarda, Carlo G.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (01): : 1 - 24
  • [49] P-splines quantile regression estimation in varying coefficient models
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    [J]. TEST, 2014, 23 : 153 - 194
  • [50] Correcting for spatial heterogeneity in plant breeding experiments with P-splines
    Xose Rodriguez-Alvarez, Maria
    Boer, Martin P.
    van Eeuwijk, Fred A.
    Eilers, Paul H. C.
    [J]. SPATIAL STATISTICS, 2018, 23 : 52 - 71