Quantile regression with monotonicity restrictions using P-splines and the L1-norm

被引:33
|
作者
Bollaerts, Kaatje [1 ]
Eilers, Paul H. C. [1 ]
Aerts, Marc [1 ]
机构
[1] Univ Hasselt, Ctr Stat, B-3590 Diepenbeek, Belgium
关键词
growth curves; interior point; L-1-norm; monotonicity; P-splines; quantile regression;
D O I
10.1191/1471082X06st118oa
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is an alternative to OLS regression. In quantile regression, the sum of absolute deviations or the L-1-norm is minimized, whereas the sum of squared deviations or the L-2-norm is minimized in OLS regression. Quantile regression has the advantage over OLS-regression of being more robust to outlying observations. Furthermore, quantile regression provides information complementing the information provided by OLS-regression. In this study, a non-parametric approach to quantile regression is presented, which constrains the estimated-quanti le function to be monotone increasing. In particular, P-splines with an additional asymmetric penalty enforcing monotonicity are used within an L-1-framework. This can be translated into a linear programming problem, which will be solved using an interior point algorithm. As an illustration, the presented approach will be applied to estimate quantile growth curves and quantile antibody levels as a function of age.
引用
收藏
页码:189 / 207
页数:19
相关论文
共 50 条
  • [31] Asymptotics of the“Minimum L1-Norm”Estimates in Nonparametric Regression Models
    Shi Pei-De Cheng Ping Institute of Systems Science Academia Sinica Beijing
    [J]. Acta Mathematica Sinica,English Series, 1994, (03) : 276 - 288
  • [32] LIMITS OF HK,P-SPLINES AS P-] 1
    CHUI, CK
    SMITH, PW
    WARD, JD
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A161 - A161
  • [33] Maximization of L1-norm Using Jacobi Rotations
    Borowicz, Adam
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1951 - 1955
  • [34] Notes on quantum coherence with l1-norm and convex-roof l1-norm
    Zhu, Jiayao
    Ma, Jian
    Zhang, Tinggui
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (12)
  • [35] STATISTICAL RANKING USING THE l1-NORM ON GRAPHS
    Osting, Braxton
    Darbon, Jerome
    Osher, Stanley
    [J]. INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 907 - 926
  • [36] Multiclass Gene Selection on Microarray Data using l1-norm Least Square Regression
    Hang, Xiyi
    [J]. 2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 52 - 55
  • [37] Adaptive subtraction of multiples using the L1-norm
    Guitton, A
    Verschuur, DJ
    [J]. GEOPHYSICAL PROSPECTING, 2004, 52 (01) : 27 - 38
  • [38] Maximization of L1-norm Using Jacobi Rotations
    Borowicz, Adam
    [J]. European Signal Processing Conference, 2022, 2022-August : 1951 - 1955
  • [39] Bayesian nonparametric quantile regression using splines
    Thompson, Paul
    Cai, Yuzhi
    Moyeed, Rana
    Reeve, Dominic
    Stander, Julian
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 1138 - 1150
  • [40] Lp-Norm for Compositional Data: Exploring the CoDa L1-Norm in Penalised Regression
    Saperas-Riera, Jordi
    Mateu-Figueras, Gloria
    Martin-Fernandez, Josep Antoni
    [J]. MATHEMATICS, 2024, 12 (09)