Bayesian nonparametric quantile regression using splines

被引:36
|
作者
Thompson, Paul [1 ]
Cai, Yuzhi [1 ]
Moyeed, Rana [1 ]
Reeve, Dominic [2 ]
Stander, Julian [1 ]
机构
[1] Univ Plymouth, Sch Comp & Math, Plymouth PL4 8AA, Devon, England
[2] Univ Plymouth, Sch Engn, C CoDE, Plymouth PL4 8AA, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
CHAIN MONTE-CARLO; ALGORITHM;
D O I
10.1016/j.csda.2009.09.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new technique based on Bayesian quantile regression that models the dependence of a quantile of one variable on the values of another using a natural cubic spline is presented. Inference is based on the posterior density of the spline and an associated smoothing parameter and is performed by means of a Markov chain Monte Carlo algorithm. Examples of the application of the new technique to two real environmental data sets and to simulated data for which polynomial modelling is inappropriate are given. An aid for making a good choice of proposal density in the Metropolis-Hastings algorithm is discussed. The new nonparametric methodology provides more flexible modelling than the currently used Bayesian parametric quantile regression approach. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1138 / 1150
页数:13
相关论文
共 50 条
  • [1] Nonparametric M-quantile regression using penalised splines
    Pratesi, Monica
    Ranalli, M. Giovanna
    Salvati, Nicola
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (03) : 287 - 304
  • [2] Local asymptotics for nonparametric quantile regression with regression splines
    Zhao, Weihua
    Lian, Heng
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 117 : 209 - 215
  • [3] Variational Inference for Nonparametric Bayesian Quantile Regression
    Abeywardana, Sachinthaka
    Ramos, Fabio
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1686 - 1692
  • [4] A Bayesian Nonparametric Approach to Inference for Quantile Regression
    Taddy, Matthew A.
    Kottas, Athanasios
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (03) : 357 - 369
  • [5] Bayesian mixture of splines for spatially adaptive nonparametric regression
    Wood, SA
    Jiang, WX
    Tanner, M
    [J]. BIOMETRIKA, 2002, 89 (03) : 513 - 528
  • [6] Bayesian nonparametric quantile process regression and estimation of marginal quantile effects
    Xu, Steven G.
    Reich, Brian J.
    [J]. BIOMETRICS, 2023, 79 (01) : 151 - 164
  • [7] qgam: Bayesian Nonparametric Quantile Regression Modeling in R
    Fasiolo, Matteo
    Wood, Simon N.
    Zaffran, Margaux
    Nedellec, Raphael
    Goude, Yannig
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (09): : 1 - 31
  • [8] Confidence intervals for nonparametric quantile regression: an emphasis on smoothing splines approach
    Lim, Yaeji
    Oh, Hee-Seok
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2017, 59 (04) : 527 - 543
  • [9] Cardinal Splines in Nonparametric Regression
    Cho, J.
    Levit, B.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2008, 17 (01) : 19 - 34
  • [10] An Algorithm of Nonparametric Quantile Regression
    Mei Ling Huang
    Yansan Han
    William Marshall
    [J]. Journal of Statistical Theory and Practice, 2023, 17