Confidence intervals for nonparametric quantile regression: an emphasis on smoothing splines approach

被引:0
|
作者
Lim, Yaeji [1 ]
Oh, Hee-Seok [2 ]
机构
[1] Pukyong Natl Univ, Dept Stat, Busan, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
non-Gaussian distribution; pseudo data; quantile function; spline estimator;
D O I
10.1111/anzs.12223
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the problem of constructing confidence intervals for nonparametric quantile regression with an emphasis on smoothing splines. The mean-based approaches for smoothing splines of Wahba (1983) and Nychka (1988) may not be efficient for constructing confidence intervals for the underlying function when the observed data are non-Gaussian distributed, for instance if they are skewed or heavy-tailed. This paper proposes a method of constructing confidence intervals for the unknown th quantile function (0<<1) based on smoothing splines. In this paper we investigate the extent to which the proposed estimator provides the desired coverage probability. In addition, an improvement based on a local smoothing parameter that provides more uniform pointwise coverage is developed. The results from numerical studies including a simulation study and real data analysis demonstrate the promising empirical properties of the proposed approach.
引用
收藏
页码:527 / 543
页数:17
相关论文
共 50 条
  • [1] Computing confidence intervals from massive data via penalized quantile smoothing splines
    Zhang, Likun
    del Castillo, Enrique
    Berglund, Andrew J.
    Tingley, Martin P.
    Govind, Nirmal
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144 (144)
  • [2] Confidence intervals for nonparametric regression
    Brown, Lawrence D.
    Fu, Xin
    Zhao, Linda H.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (01) : 149 - 163
  • [3] Local asymptotics for nonparametric quantile regression with regression splines
    Zhao, Weihua
    Lian, Heng
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 209 - 215
  • [4] Better nonparametric confidence intervals via robust bias correction for quantile regression
    Guo, Shaojun
    Han, Yu
    Wang, Qingsong
    STAT, 2021, 10 (01):
  • [6] A CONVERGENT ALGORITHM FOR QUANTILE REGRESSION WITH SMOOTHING SPLINES
    BOSCH, RJ
    YE, YY
    WOODWORTH, GG
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 19 (06) : 613 - 630
  • [7] Bayesian nonparametric quantile regression using splines
    Thompson, Paul
    Cai, Yuzhi
    Moyeed, Rana
    Reeve, Dominic
    Stander, Julian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 1138 - 1150
  • [8] Nonparametric confidence intervals for quantile intervals and quantile differences based on record statistics
    Ahmadi, J.
    Balakrishnan, N.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (10) : 1236 - 1245
  • [9] On relaxed boundary smoothing splines for nonparametric regression
    Eggermont, P. P. B.
    LaRiccia, V. N.
    ADVANCES IN APPLIED AND COMPUTATIONAL MATHEMATICS, 2006, : 63 - +
  • [10] Monotone Nonparametric Regression and Confidence Intervals
    Strand, Matthew
    Zhang, Yu
    Swihart, Bruce J.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (04) : 828 - 845