Bayesian nonparametric quantile regression using splines

被引:36
|
作者
Thompson, Paul [1 ]
Cai, Yuzhi [1 ]
Moyeed, Rana [1 ]
Reeve, Dominic [2 ]
Stander, Julian [1 ]
机构
[1] Univ Plymouth, Sch Comp & Math, Plymouth PL4 8AA, Devon, England
[2] Univ Plymouth, Sch Engn, C CoDE, Plymouth PL4 8AA, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
CHAIN MONTE-CARLO; ALGORITHM;
D O I
10.1016/j.csda.2009.09.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new technique based on Bayesian quantile regression that models the dependence of a quantile of one variable on the values of another using a natural cubic spline is presented. Inference is based on the posterior density of the spline and an associated smoothing parameter and is performed by means of a Markov chain Monte Carlo algorithm. Examples of the application of the new technique to two real environmental data sets and to simulated data for which polynomial modelling is inappropriate are given. An aid for making a good choice of proposal density in the Metropolis-Hastings algorithm is discussed. The new nonparametric methodology provides more flexible modelling than the currently used Bayesian parametric quantile regression approach. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1138 / 1150
页数:13
相关论文
共 50 条
  • [21] Testing for additivity in nonparametric quantile regression
    Holger Dette
    Matthias Guhlich
    Natalie Neumeyer
    [J]. Annals of the Institute of Statistical Mathematics, 2015, 67 : 437 - 477
  • [22] Powerful nonparametric checks for quantile regression
    Maistre, Samuel
    Lavergne, Pascal
    Patilea, Valentin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 180 : 13 - 29
  • [23] Quantile processes for semi and nonparametric regression
    Chao, Shih-Kang
    Volgushev, Stanislav
    Cheng, Guang
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3272 - 3331
  • [24] Testing for additivity in nonparametric quantile regression
    Dette, Holger
    Guhlich, Matthias
    Neumeyer, Natalie
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (03) : 437 - 477
  • [25] Estimating Wind Power Uncertainty using Quantile Smoothing Splines Regression
    Mararakanye, Ndamulelo
    Bekker, Bernard
    [J]. 2022 57TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC 2022): BIG DATA AND SMART GRIDS, 2022,
  • [26] Income Gap in Vietnam Using Bayesian Quantile Regression
    Duong Quynh Nga
    Tran Hoang Truc Linh
    Nguyen Tran Cam Linh
    Doan Truong An
    [J]. JOURNAL OF APPLIED ECONOMICS AND BUSINESS RESEARCH, 2020, 10 (01): : 7 - 18
  • [27] Bayesian Tail Risk Interdependence Using Quantile Regression
    Bernardi, Mauro
    Gayraud, Ghislaine
    Petrella, Lea
    [J]. BAYESIAN ANALYSIS, 2015, 10 (03): : 553 - 603
  • [28] Modeling Regression Quantile Process Using Monotone B-Splines
    Yuan, Yuan
    Chen, Nan
    Zhou, Shiyu
    [J]. TECHNOMETRICS, 2017, 59 (03) : 338 - 350
  • [29] A CONVERGENT ALGORITHM FOR QUANTILE REGRESSION WITH SMOOTHING SPLINES
    BOSCH, RJ
    YE, YY
    WOODWORTH, GG
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 19 (06) : 613 - 630
  • [30] Constrained Quantile Regression Splines for Ensemble Postprocessing
    Bremnes, John Bjornar
    [J]. MONTHLY WEATHER REVIEW, 2019, 147 (05) : 1769 - 1780