Dirac edges of fractal magnetic minibands in graphene with hexagonal moire superlattices

被引:38
|
作者
Chen, Xi [1 ]
Wallbank, J. R. [1 ]
Patel, A. A. [2 ]
Mucha-Kruczynski, M. [3 ]
McCann, E. [1 ]
Fal'ko, V. I. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
SPECTRUM; FERMIONS;
D O I
10.1103/PhysRevB.89.075401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We find a systematic reappearance of massive Dirac features at the edges of consecutive minibands formed at magnetic fields B-p/q = p/q phi(0)/S providing rational magnetic flux through a unit cell of the moire superlattice created by a hexagonal substrate for electrons in graphene. The Dirac-type features in the minibands at B = B-p/q determine a hierarchy of gaps in the surrounding fractal spectrum and show that these minibands have topological insulator properties. Using the additional q-fold degeneracy of magnetic minibands at B-p/q, we trace the hierarchy of the gaps to their manifestation in the form of incompressible states upon variation of the carrier density and magnetic field.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] CONDUCTIVITY OF SUPERLATTICES WITH NARROW MINIBANDS IN QUANTIZING MAGNETIC-FIELDS
    RAICHEV, OE
    [J]. SOVIET PHYSICS SEMICONDUCTORS-USSR, 1991, 25 (09): : 934 - 937
  • [22] Minibands of magnetoplasmons in semiconductor superlattices in a perpendicular external magnetic field
    Martínez, G
    Jacobo-Escobar, JH
    Hernández, PH
    Cocoletzi, GH
    [J]. PHYSICAL REVIEW B, 1999, 59 (16) : 10843 - 10849
  • [23] Cloning of Dirac fermions in graphene superlattices
    Ponomarenko, L. A.
    Gorbachev, R. V.
    Yu, G. L.
    Elias, D. C.
    Jalil, R.
    Patel, A. A.
    Mishchenko, A.
    Mayorov, A. S.
    Woods, C. R.
    Wallbank, J. R.
    Mucha-Kruczynski, M.
    Piot, B. A.
    Potemski, M.
    Grigorieva, I. V.
    Novoselov, K. S.
    Guinea, F.
    Fal'ko, V. I.
    Geim, A. K.
    [J]. NATURE, 2013, 497 (7451) : 594 - 597
  • [24] Minibands in semiconductor superlattices modelled as Dirac combs (significance of band non-parabolicity)
    Bezák, V
    [J]. ACTA PHYSICA SLOVACA, 2003, 53 (01) : 49 - 59
  • [25] Nanoscale lattice dynamics in hexagonal boron nitride moire superlattices
    Moore, S. L.
    Ciccarino, C. J.
    Halbertal, D.
    McGilly, L. J.
    Finney, N. R.
    Yao, K.
    Shao, Y.
    Ni, G.
    Sternbach, A.
    Telford, E. J.
    Kim, B. S.
    Rossi, S. E.
    Watanabe, K.
    Taniguchi, T.
    Pasupathy, A. N.
    Dean, C. R.
    Hone, J.
    Schuck, P. J.
    Narang, P.
    Basov, D. N.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [26] Cloning of Dirac fermions in graphene superlattices
    L. A. Ponomarenko
    R. V. Gorbachev
    G. L. Yu
    D. C. Elias
    R. Jalil
    A. A. Patel
    A. Mishchenko
    A. S. Mayorov
    C. R. Woods
    J. R. Wallbank
    M. Mucha-Kruczynski
    B. A. Piot
    M. Potemski
    I. V. Grigorieva
    K. S. Novoselov
    F. Guinea
    V. I. Fal’ko
    A. K. Geim
    [J]. Nature, 2013, 497 : 594 - 597
  • [27] Magnetic ordering tendencies in hexagonal-boron-nitride-bilayer-graphene moire structures
    Spethmann, Maria
    Honerkamp, Carsten
    Kennes, Dante M.
    [J]. PHYSICAL REVIEW B, 2021, 104 (08)
  • [28] Structural Evolution of Pt Nanoclusters on Graphene Moire Superlattices
    Zhou, Qi
    Du, Yuting
    Zhang, Liya
    Yi, Ding
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (02): : 968 - 973
  • [29] Dirac-Harper Theory for One-Dimensional Moire Superlattices
    Timmel, Abigail
    Mele, E. J.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (16)
  • [30] Heterostructures of graphene and nitrogenated holey graphene: Moire pattern and Dirac ring
    Kang, Jun
    Horzum, Seyda
    Peeters, Francois M.
    [J]. PHYSICAL REVIEW B, 2015, 92 (19)