Structural Evolution of Pt Nanoclusters on Graphene Moire Superlattices

被引:0
|
作者
Zhou, Qi [1 ]
Du, Yuting [1 ]
Zhang, Liya [1 ]
Yi, Ding [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Phys Sci & Engn, Dept Phys, Beijing 100044, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 02期
关键词
TOTAL-ENERGY CALCULATIONS; METAL NANOCLUSTERS; GROWTH; CLUSTERS; NANOPARTICLES; GOLD; CATALYSIS; STABILITY; DENSITY; SIZE;
D O I
10.1021/acs.jpcc.3c07123
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Moir & eacute; superlattices formed by graphene-covered Ru(0001) are known as excellent templates for the synthesis of monodispersed transition metal nanoclusters, but an accurate description of the structural evolution at the atomic level is still lacking. Herein, using first-principles calculations, we systematically explore the nucleation and growth of Pt nanoclusters (PtNCs) on such moir & eacute; superlattices. Our calculations reveal that, for the nucleation of PtNCs, FCC regions of the moir & eacute; superlattices are preferred compared with other regions due to the stronger C-sp(3) hybridization. Considering different shapes and stacking modes, monolayer PtNCs of regular hexagons and truncated triangles with three atoms removed from each corner and bilayer PtNCs of partially covered second layers with AA stacking are relatively stable. Comparing these stable configurations, we can find out that PtNC with 27 atoms is the critical size where the 2D growth mode will change to the 3D growth mode because of the weakening of Pt-C bonds caused by the inhibition of C-sp(3) hybridization. Our findings are of significance in revealing the structural evolution of metal nanoclusters on graphene moir & eacute; superlattices and other 2D templates.
引用
收藏
页码:968 / 973
页数:6
相关论文
共 50 条
  • [1] Formation of Pt and Rh Nanoclusters on a Graphene Moire Pattern on Cu(111)
    Soy, Esin
    Liang, Zhu
    Trenary, Michael
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (44): : 24796 - 24803
  • [2] Plasmons in graphene moire superlattices
    Ni, G. X.
    Wang, H.
    Wu, J. S.
    Fei, Z.
    Goldflam, M. D.
    Keilmann, F.
    Oezyilmaz, B.
    Neto, A. H. Castro
    Xie, X. M.
    Fogler, M. M.
    Basov, D. N.
    [J]. NATURE MATERIALS, 2015, 14 (12) : 1217 - 1222
  • [3] GRAPHENE Plasmons in moire superlattices
    Polini, Marco
    Koppens, Frank H. L.
    [J]. NATURE MATERIALS, 2015, 14 (12) : 1187 - 1188
  • [4] Classifying superconductivity in Moire graphene superlattices
    Talantsev, E. F.
    Mataira, R. C.
    Crump, W. P.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Localization physics in graphene moire superlattices
    Kumar, Chandan
    Srivastav, Saurabh Kumar
    Adhikary, Priyo
    Banerjee, Sumilan
    Das, Tanmoy
    Das, Anindya
    [J]. PHYSICAL REVIEW B, 2018, 98 (15)
  • [6] Intralayer Phonons in Multilayer Graphene Moire Superlattices
    Lin, Miao-Ling
    Feng, Min
    Wu, Jiang-Bin
    Ran, Fei-Rong
    Chen, Tao
    Luo, Wei-Xia
    Wu, Heng
    Han, Wen-Peng
    Zhang, Xin
    Liu, Xue-Lu
    Xu, Yang
    Li, Hai
    Wang, Yu-Fang
    Tan, Ping-Heng
    [J]. RESEARCH, 2022, 2022
  • [7] Pairing in graphene-based moire superlattices
    Scheurer, Mathias S.
    Samajdar, Rhine
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [8] Emergence of Tertiary Dirac Points in Graphene Moire Superlattices
    Chen, Guorui
    Sui, Mengqiao
    Wang, Duoming
    Wang, Shuopei
    Jung, Jeil
    Moon, Pilkyung
    Adam, Shaffique
    Watanabe, Kenji
    Taniguchi, Takashi
    Zhou, Shuyun
    Koshino, Mikito
    Zhang, Guangyu
    Zhane, Yuanbo
    [J]. NANO LETTERS, 2017, 17 (06) : 3576 - 3581
  • [9] Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure
    Zhu, J.
    Quan, Z.
    Wang, C.
    Wen, X.
    Jiang, Y.
    Fang, J.
    Wang, Z.
    Zhao, Y.
    Xu, H.
    [J]. NANOSCALE, 2016, 8 (09) : 5214 - 5218
  • [10] Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moire overlayer
    Donner, Kerstin
    Jakob, Peter
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (16):