Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure

被引:25
|
作者
Zhu, J. [1 ]
Quan, Z. [2 ]
Wang, C. [3 ]
Wen, X. [4 ]
Jiang, Y. [5 ]
Fang, J. [3 ]
Wang, Z. [6 ]
Zhao, Y. [1 ]
Xu, H. [2 ]
机构
[1] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA
[2] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA
[3] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA
[4] Chinese Acad Sci, Inst Coal Chem, Taiyuan 030001, Shanxi, Peoples R China
[5] Univ New Mexico, TEM Lab, Albuquerque, NM 87131 USA
[6] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA
关键词
NANOCRYSTALS; ASSEMBLIES; NANOCUBES; ENERGY; PHASE;
D O I
10.1039/c5nr08291a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High pressure is an effective means for tuning the interparticle distances of nanoparticle (NP) superlattices and thus for modifying their physical properties and functionalities. In this work, we determined the evolution of inter-NP distances of a Pt NP superlattice with increasing pressure using an in situ synchrotron small-angle X-ray scattering (SAXS) technique in a diamond-anvil cell (DAC). Transmission electron microscopy (TEM) was used to characterize the microstructures of pre- and post-compression samples. Our results demonstrate that the evolution of Pt NP assemblies with increasing pressure consists of four stages: (1) ligand elastic response, (2) uniform compression, (3) ligand detachment from NP surfaces, and (4) deviatoric compression of ligands between neighboring NPs. By controlling the magnitudes of applied pressure and deviatoric stress, one can sinter NPs into novel architectures such as nanowires and nanoceramics.
引用
收藏
页码:5214 / 5218
页数:5
相关论文
共 50 条
  • [1] Elastic behaviour and structural evolution of topaz at high pressure
    G. Diego Gatta
    F. Nestola
    T. Boffa Ballaran
    [J]. Physics and Chemistry of Minerals, 2006, 33 : 235 - 242
  • [2] Elastic behaviour and structural evolution of topaz at high pressure
    Gatta, G. Diego
    Nestola, F.
    Ballaran, T. Boffa
    [J]. PHYSICS AND CHEMISTRY OF MINERALS, 2006, 33 (04) : 235 - 242
  • [3] Structural Evolution of Pt Nanoclusters on Graphene Moire Superlattices
    Zhou, Qi
    Du, Yuting
    Zhang, Liya
    Yi, Ding
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (02): : 968 - 973
  • [4] Evolution of mechanical behaviour in a structural steel subjected to high temperatures
    Setién, J
    González, JJ
    Alvarez, JA
    Polanco, JA
    [J]. ENGINEERING FAILURE ANALYSIS, 2002, 9 (02) : 191 - 200
  • [5] Structural diversity in binary nanoparticle superlattices
    Elena V. Shevchenko
    Dmitri V. Talapin
    Nicholas A. Kotov
    Stephen O'Brien
    Christopher B. Murray
    [J]. Nature, 2006, 439 : 55 - 59
  • [6] Ultrafast Electron Transfer in Binary Nanoparticle Superlattices under High Pressure
    Cheng, Ji-Chao
    Pan, Ling-Yun
    Tu, Hong-Yu
    Qi, Hong-Jian
    Ji, Wen-Yu
    Li, Fang-Fei
    Wang, Ying-Hui
    Xu, Shu-Ping
    Men, Zhi-Wei
    Cui, Tian
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (07):
  • [7] Structural diversity in binary nanoparticle superlattices
    Shevchenko, EV
    Talapin, DV
    Kotov, NA
    O'Brien, S
    Murray, CB
    [J]. NATURE, 2006, 439 (7072) : 55 - 59
  • [8] Structural behaviour of levyne at high pressure
    Zanazzi, PF
    Comodi, P
    Gatta, GD
    [J]. LITHOS, 2004, 73 (1-2) : S123 - S123
  • [9] High pressure torsion processing of maraging steel 250: Microstructure and mechanical behaviour evolution
    Jacob, Kevin
    Yadav, Deepesh
    Dixit, Saurabh
    Hohenwarter, Anton
    Jaya, Balila Nagamani
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802 (802):
  • [10] MECHANICAL BEHAVIOUR OF POLYMERS UNDER HIGH PRESSURE
    CHRISTIA.AW
    BAER, E
    RADCLIFF.SV
    [J]. PHILOSOPHICAL MAGAZINE, 1971, 24 (188): : 451 - &