A non-local perturbation of the logistic equation in RN

被引:3
|
作者
Delgado, M. [1 ]
Molina-Becerra, M. [2 ]
Santos, J. R., Jr. [3 ]
Suarez, A. [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, Seville, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, Esc Politecn Super, Seville, Spain
[3] Univ Fed Para, Fac Matemat, Belem, Para, Brazil
关键词
Non-local term; Logistic equation; Sub-supersolution method;
D O I
10.1016/j.na.2019.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A logistic equation in the whole space is considered. In this problem, a non-local perturbation is included. We establish a new sub-supersolution method for general nonlocal elliptic equations and, consequently, we obtain the existence of positive solutions of a nonlocal logistic equation. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 50 条
  • [41] Dirichlet problem for an equation of non-local diffusion with source
    Bogoya, Mauricio
    Maricel Elorreaga, Luz
    BOLETIN DE MATEMATICAS, 2012, 19 (01): : 55 - 64
  • [42] ON ONE NON-LOCAL PROBLEM FOR AXISYMMETRIC HELMHOLTZ EQUATION
    Abashkin, A. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (03): : 26 - 34
  • [43] On a Stochastic Partial Differential Equation with Non-local Diffusion
    Pascal Azerad
    Mohamed Mellouk
    Potential Analysis, 2007, 27 : 183 - 197
  • [44] Weakly non-local fluid mechanics:: the Schrodinger equation
    Ván, P
    Fülöp, T
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066): : 541 - 557
  • [45] One non-local problem for the laplace equation in a disc
    Criado-Aldeanueva, F.
    Criado, F.
    Odishelidze, N.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (02) : 109 - 116
  • [46] Burgers' equation with non-local shot noise data
    Surgailis, D.
    Woyczynski, W. A.
    Journal of Applied Probability, 1994, 31//A
  • [47] On generalized logistic equations with non-local term of feedback control type
    Huy, Nguyen Bich
    Quang, Nguyen Dang
    Quan, Bui The
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (01)
  • [48] PERSISTENCE AND EXTINCTION OF A NON-AUTONOMOUS LOGISTIC EQUATION WITH RANDOM PERTURBATION
    Liu, Meng
    Wang, Ke
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [49] Non-linear Schrodinger equation with non-local regional diffusion
    Felmer, Patricio
    Torres, Cesar
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 75 - 98
  • [50] Some non-local logistic population model with non-zero boundary condition
    Cerda, Patricio
    Souto, Marco
    Ubilla, Pedro
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (08)