A non-local perturbation of the logistic equation in RN

被引:3
|
作者
Delgado, M. [1 ]
Molina-Becerra, M. [2 ]
Santos, J. R., Jr. [3 ]
Suarez, A. [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, Seville, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, Esc Politecn Super, Seville, Spain
[3] Univ Fed Para, Fac Matemat, Belem, Para, Brazil
关键词
Non-local term; Logistic equation; Sub-supersolution method;
D O I
10.1016/j.na.2019.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A logistic equation in the whole space is considered. In this problem, a non-local perturbation is included. We establish a new sub-supersolution method for general nonlocal elliptic equations and, consequently, we obtain the existence of positive solutions of a nonlocal logistic equation. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 50 条
  • [21] CONCENTRATION PHENOMEN IN SOME NON-LOCAL EQUATION
    Bonnefon, Olivier
    Coville, Jerome
    Legendre, Guillaume
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (03): : 763 - 781
  • [22] A Non-Local Diffusion Equation for Noise Removal
    Jingfeng Shao
    Zhichang Guo
    Wenjuan Yao
    Dong Yan
    Boying Wu
    Acta Mathematica Scientia, 2022, 42 : 1779 - 1808
  • [23] Scalar field equation with non-local diffusion
    Patricio Felmer
    Ignacio Vergara
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 1411 - 1428
  • [24] A REMARK ON AN ELLIPTIC EQUATION WITH A NON-LOCAL NONLINEARITY
    PERLAMENZALA, G
    MATEMATICA APLICADA E COMPUTACIONAL, 1983, 2 (01): : 75 - 79
  • [25] Spectral analysis and long-time behaviour of a Fokker-Planck equation with a non-local perturbation
    Sturzer, Dominik
    Arnold, Anton
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2014, 25 (01) : 53 - 89
  • [26] Optimization of species survival for logistic models with non-local dispersal
    Bai, Xueli
    Li, Fang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 : 53 - 62
  • [27] EXISTENCE OF A SOLUTION FOR A NON-LOCAL PROBLEM IN RN VIA BIFURCATION THEORY
    Alves, Claudianor O.
    de Lima, Romildo N.
    Souto, Marco A. S.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (03) : 825 - 845
  • [28] NON-LOCAL FIELD AND NON-LOCAL INTERACTION
    KATAYAMA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1952, 8 (03): : 381 - 382
  • [29] On a Non-Local Problem for a Boussinesq Type Differential Equation
    Sh. A. Alimov
    A. R. Khalmukhamedov
    Lobachevskii Journal of Mathematics, 2022, 43 : 916 - 923
  • [30] Nonlinear degenerate parabolic equation with non-local source
    Weibing D.
    Chunhong X.
    Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (2) : 171 - 176