Weakly non-local fluid mechanics:: the Schrodinger equation

被引:8
|
作者
Ván, P
Fülöp, T
机构
[1] Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary
[2] BME, Dept Chem Phys, H-1521 Budapest, Hungary
[3] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan
关键词
Korteweg fluids; Liu procedure; Schrodinger equation;
D O I
10.1098/rspa.2005.1588
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A weakly non-local extension of ideal fluid dynamics is derived from the Second Law of thermodynamics. It is proved that in the reversible limit, the additional pressure term can be derived from a potential. The requirement of the additivity, of the specific entropy function determines the quantum potential uniquely. The relation to other known derivations of the Schrodinger equation (stochastic, Fisher information, exact uncertainty) is clarified.
引用
收藏
页码:541 / 557
页数:17
相关论文
共 50 条
  • [1] Non-linear Schrodinger equation with non-local regional diffusion
    Felmer, Patricio
    Torres, Cesar
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 75 - 98
  • [2] THE SCHRODINGER EQUATION IN THE CONTEXT OF FLUID MECHANICS
    Cabrera, D.
    Fernandez de Cordoba, P.
    Isidro, J. M.
    Valdes Placeres, J. M.
    Vazquez Molina, J.
    [J]. REVISTA CUBANA DE FISICA, 2016, 33 (02): : 98 - 101
  • [3] Solitary waves of the non-local Schrodinger equation with arbitrary refractive index
    Kudryashov, Nikolay A.
    [J]. OPTIK, 2021, 231
  • [4] Is quantum mechanics non-local?
    Unruh, WG
    [J]. NON-LOCALITY AND MODALITY, 2002, 64 : 125 - 136
  • [5] Integrable local and non-local vector Non-linear Schrodinger Equation with balanced loss and gain
    Sinha, Debdeep
    [J]. PHYSICS LETTERS A, 2022, 448
  • [6] EXISTENCE AND CONCENTRATION OF SOLUTION FOR A NON-LOCAL REGIONAL SCHRODINGER EQUATION WITH COMPETING POTENTIALS
    Alves, Claudianor O.
    Torres Ledesma, Cesar E.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (02) : 441 - 460
  • [7] Multiplicity and symmetry results for a nonlinear Schrodinger equation with non-local regional diffusion
    Torres Ledesma, Cesar E.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) : 2808 - 2820
  • [8] INTERNAL CONTROL FOR A NON-LOCAL SCHRODINGER EQUATION INVOLVING THE FRACTIONAL LAPLACE OPERATOR
    Biccari, Umberto
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (01): : 301 - 324
  • [9] Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation
    Daripa, P
    Dash, RK
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (4-6) : 393 - 405
  • [10] QUANTUM-MECHANICS LOCAL OR NON-LOCAL
    BHATTACHARYA, HH
    [J]. AMERICAN JOURNAL OF PHYSICS, 1984, 52 (06) : 487 - 487