Weakly non-local fluid mechanics:: the Schrodinger equation

被引:8
|
作者
Ván, P
Fülöp, T
机构
[1] Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary
[2] BME, Dept Chem Phys, H-1521 Budapest, Hungary
[3] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan
关键词
Korteweg fluids; Liu procedure; Schrodinger equation;
D O I
10.1098/rspa.2005.1588
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A weakly non-local extension of ideal fluid dynamics is derived from the Second Law of thermodynamics. It is proved that in the reversible limit, the additional pressure term can be derived from a potential. The requirement of the additivity, of the specific entropy function determines the quantum potential uniquely. The relation to other known derivations of the Schrodinger equation (stochastic, Fisher information, exact uncertainty) is clarified.
引用
收藏
页码:541 / 557
页数:17
相关论文
共 50 条
  • [31] Fundamental solutions of generalized non-local Schrodinger operators
    Do, Tan Duc
    [J]. ARKIV FOR MATEMATIK, 2022, 60 (01): : 43 - 66
  • [32] Absence of embedded eigenvalues for non-local Schrodinger operators
    Ishida, Atsuhide
    Lorinczi, Jozsef
    Sasaki, Itaru
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (04)
  • [33] DYNAMICAL PROPERTIES FOR A RELAXATION SCHEME APPLIED TO A WEAKLY DAMPED NON LOCAL NONLINEAR SCHRODINGER EQUATION
    Goubet, Olivier
    Hussein, Manal
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (02): : 71 - 82
  • [34] Potentials for non-local Schrodinger operators with zero eigenvalues
    Ascione, Giacomo
    Lorinczi, Jozsef
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 264 - 364
  • [35] Levels of the Schrodinger operator with a perturbed non-local potential
    Smetanina, M. S.
    [J]. IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2006, (01): : 98 - 104
  • [36] A morphing strategy to couple non-local to local continuum mechanics
    Lubineau, Gilles
    Azdoud, Yan
    Han, Fei
    Rey, Christian
    Askari, Abe
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (06) : 1088 - 1102
  • [38] A high-order nonlinear Schrodinger equation with the weak non-local nonlinearity and its optical solitons
    Hosseini, K.
    Sadri, K.
    Mirzazadeh, M.
    Chu, Y. M.
    Ahmadian, A.
    Pansera, B. A.
    Salahshour, S.
    [J]. RESULTS IN PHYSICS, 2021, 23
  • [39] On the two-power nonlinear Schrodinger equation with non-local terms in Sobolev-Lorentz spaces
    Barros, Vanessa
    Ferreira, Lucas C. F.
    Pastor, Ademir
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (05):
  • [40] On the wave equation with a temporal non-local term
    Medjden, Mohamed
    Tatar, Nasser-Eddinne
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 665 - 671