A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations

被引:33
|
作者
Lazarov, R [1 ]
Tomov, S [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
adaptive grid refinement; convection-diffusion; finite volume method; residual error estimators; up-wind approximation;
D O I
10.1023/A:1021247300362
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present the results of a study on a posteriori error control strategies for finite volume element approximations of second order elliptic differential equations. Finite volume methods ensure local mass conservation and, combined with some up-wind strategies, give monotone solutions. We adapt the local refinement techniques known from the finite element method to the finite volume discretizations of various boundary value problems for steady-state convection-diffusion-reaction equations. In this paper we derive and study a residual type error estimator and illustrate its practical performance on a series of computational tests in 2 and 3 dimensions. Our tests show that the discussed locally conservative approximation methods with a posteriori error control can be used successfully in numerical simulation of fluid flow and transport in porous media.
引用
收藏
页码:483 / 503
页数:21
相关论文
共 50 条
  • [31] A Linearized Adaptive Dynamic Diffusion Finite Element Method for Convection-Diffusion-Reaction Equations
    Shaohong Du
    Qianqian Hou
    Xiaoping Xie
    Annals of Applied Mathematics, 2023, 39 (03) : 323 - 351
  • [32] Solving convection-diffusion-reaction equation by adaptive finite volume element method
    Theeraek, P.
    Phongthanapanich, S.
    Dechaumphai, P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 82 (02) : 220 - 233
  • [33] On stabilized finite element methods for linear systems of convection-diffusion-reaction equations
    Codina, R
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 188 (1-3) : 61 - 82
  • [34] A POSTERIORI ERROR ESTIMATES FOR DARCY-FORCHHEIMER'S PROBLEM COUPLED WITH THE CONVECTION-DIFFUSION-REACTION EQUATION
    Triki, Faouzi
    Sayah, Toni
    Semaan, Georges
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 65 - 103
  • [35] Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations
    DU ShaoHong
    XIE XiaoPing
    Science China Mathematics, 2015, 58 (06) : 1327 - 1348
  • [36] Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations
    ShaoHong Du
    XiaoPing Xie
    Science China Mathematics, 2015, 58 : 1327 - 1348
  • [37] A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
    Nancy Chalhoub
    Pascal Omnes
    Toni Sayah
    Rebecca El Zahlaniyeh
    Numerical Algorithms, 2022, 89 : 1247 - 1286
  • [38] Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations
    Du ShaoHong
    Xie XiaoPing
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) : 1327 - 1348
  • [39] A posteriori error estimates for approximations of evolutionary convection-diffusion problems
    Repin S.I.
    Tomar S.K.
    Journal of Mathematical Sciences, 2010, 170 (4) : 554 - 566
  • [40] A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
    Chalhoub, Nancy
    Omnes, Pascal
    Sayah, Toni
    El Zahlaniyeh, Rebecca
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1247 - 1286