We present the results of a study on a posteriori error control strategies for finite volume element approximations of second order elliptic differential equations. Finite volume methods ensure local mass conservation and, combined with some up-wind strategies, give monotone solutions. We adapt the local refinement techniques known from the finite element method to the finite volume discretizations of various boundary value problems for steady-state convection-diffusion-reaction equations. In this paper we derive and study a residual type error estimator and illustrate its practical performance on a series of computational tests in 2 and 3 dimensions. Our tests show that the discussed locally conservative approximation methods with a posteriori error control can be used successfully in numerical simulation of fluid flow and transport in porous media.
机构:
Univ Hassan 1, LM2CE, Fac Sci Jurid Econ & Sociales, Settat, MoroccoUniv Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
Achchab, B.
El Fatini, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hassan 1, LM2CE, Fac Sci Jurid Econ & Sociales, Settat, Morocco
Univ Hassan 2, LAMS, Fac Sci Ben MSick, Casablanca, MoroccoUniv Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
El Fatini, M.
Ern, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, FranceUniv Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
Ern, A.
Souissi, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mohammed V Agdal, GAN, LMA, Fac Sci Rabat, Rabat, Morocco
Ecole Mohammadia Ingenieurs, LERMA, Rabat, MoroccoUniv Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France