On the reality of the eigenvalues for a class of PT-symmetric oscillators

被引:115
|
作者
Shin, KC [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1007/s00220-002-0706-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the eigenvalue problem -u(eta)(z) - [(iz)(m) + P(iz)]u(z) = with the boundary conditions that u(z) decays to zero as z tends to infinity along the rays arg z = -(pi)/(2) +/- (2pi)/(m+2), where P(z) = a(1)z(m-1) + a(2)z(m-2) + ... + a(m-1)z is a real polynomial and m greater than or equal to 2. We prove that if for some 1 less than or equal to j less than or equal to (m)/(2) we have (j - k)a(k) greater than or equal to 0 for all 1 less than or equal to k less than or equal to m - 1, then the eigenvalues are all positive real. We then sharpen this to a larger class of polynomial potentials. In particular, this implies that the eigenvalues are all positive real for the potentials alphaiz(3) + betaz(2) + gammaiz when alpha, beta, gamma is an element of R with alpha not equal 0 and alpha gamma greater than or equal to 0, and with the boundary conditions that u(z) decays to zero as z tends to infinity along the positive and negative real axes. This verifies a conjecture of Bessis and Zinn-Justin.
引用
收藏
页码:543 / 564
页数:22
相关论文
共 50 条
  • [21] Computing Periodic and Antiperiodic Eigenvalues with a PT-Symmetric Optical Potential
    C. Nur
    Mathematical Notes, 2023, 114 : 1401 - 1417
  • [22] Observation of the perturbed eigenvalues of PT-symmetric LC resonator systems
    Zhou, Bin-Bin
    Wang, Li-Feng
    Dong, Lei
    Huang, Qing-An
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (04):
  • [23] PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators
    Cuevas-Maraver, Jesus
    Khare, Avinash
    Kevrekidis, Panayotis G.
    Xu, Haitao
    Saxena, Avadh
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 3960 - 3985
  • [24] Multifaceted nonlinear dynamics in PT-symmetric coupled Lienard oscillators
    Deka, Jyoti Prasad
    Sarma, Amarendra K.
    Govindarajan, A.
    Kulkarni, Manas
    NONLINEAR DYNAMICS, 2020, 100 (02) : 1629 - 1640
  • [25] Conjecture on the analyticity of PT-symmetric potentials and the reality of their spectra
    Bender, Carl M.
    Hook, Daniel W.
    Mead, Lawrence R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (39)
  • [26] PT Symmetric Schrodinger Operators: Reality of the Perturbed Eigenvalues
    Caliceti, Emanuela
    Cannata, Francesco
    Graffi, Sandro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [27] 1/L expansions for a class of PT-symmetric potentials
    Bíla, H
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) : 1049 - 1054
  • [28] A new class of PT-symmetric Hamiltonians with real spectra
    Cannata, F
    Ioffe, M
    Roychoudhury, R
    Roy, P
    PHYSICS LETTERS A, 2001, 281 (5-6) : 305 - 310
  • [29] Non-Hermitian matrix description of the PT-symmetric anharmonic oscillators
    Znojil, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (42): : 7419 - 7428
  • [30] A non-trivial PT-symmetric continuum Hamiltonian and its eigenstates and eigenvalues
    Mead, Lawrence R.
    Lee, Sungwook
    Garfinkle, David
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (07)