On the reality of the eigenvalues for a class of PT-symmetric oscillators

被引:115
|
作者
Shin, KC [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1007/s00220-002-0706-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the eigenvalue problem -u(eta)(z) - [(iz)(m) + P(iz)]u(z) = with the boundary conditions that u(z) decays to zero as z tends to infinity along the rays arg z = -(pi)/(2) +/- (2pi)/(m+2), where P(z) = a(1)z(m-1) + a(2)z(m-2) + ... + a(m-1)z is a real polynomial and m greater than or equal to 2. We prove that if for some 1 less than or equal to j less than or equal to (m)/(2) we have (j - k)a(k) greater than or equal to 0 for all 1 less than or equal to k less than or equal to m - 1, then the eigenvalues are all positive real. We then sharpen this to a larger class of polynomial potentials. In particular, this implies that the eigenvalues are all positive real for the potentials alphaiz(3) + betaz(2) + gammaiz when alpha, beta, gamma is an element of R with alpha not equal 0 and alpha gamma greater than or equal to 0, and with the boundary conditions that u(z) decays to zero as z tends to infinity along the positive and negative real axes. This verifies a conjecture of Bessis and Zinn-Justin.
引用
收藏
页码:543 / 564
页数:22
相关论文
共 50 条
  • [31] Computing Dirichlet eigenvalues of the Schrödinger operator with a PT-symmetric optical potential
    Nur, Cemile
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [32] PT-symmetric scatterers
    Miri, Mohammad-Ali
    Nye, Nicholas
    Khajavikhan, Mercedeh
    Christodoulides, Demetrios N.
    ACTIVE PHOTONIC MATERIALS VII, 2015, 9546
  • [33] Three types of discrete energy eigenvalues in complex PT-symmetric scattering potentials
    Ahmed, Zafar
    Kumar, Sachin
    Ghosh, Dona
    PHYSICAL REVIEW A, 2018, 98 (04)
  • [34] PT-symmetric electronics
    Schindler, J.
    Lin, Z.
    Lee, J. M.
    Ramezani, H.
    Ellis, F. M.
    Kottos, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
  • [35] PT-Symmetric Acoustics
    Zhu, Xuefeng
    Ramezani, Hamidreza
    Shi, Chengzhi
    Zhu, Jie
    Zhang, Xiang
    PHYSICAL REVIEW X, 2014, 4 (03):
  • [36] Computing Dirichlet eigenvalues of the Schrödinger operator with a PT-symmetric optical potential
    Cemile Nur
    Boundary Value Problems, 2023
  • [37] Eigenvalues and eigenfunctions of Woods-Saxon potential in PT-symmetric quantum mechanics
    Berkdemir, Ayse
    Berkdemir, Cuneyt
    Sever, Ramazan
    MODERN PHYSICS LETTERS A, 2006, 21 (27) : 2087 - 2097
  • [38] A PT-symmetric QES partner to the Khare-Mandal potential with real eigenvalues
    Bagchi, B
    Mallik, S
    Quesne, C
    Roychoudhury, R
    PHYSICS LETTERS A, 2001, 289 (1-2) : 34 - 38
  • [39] PT-symmetric kinks
    Dutra, A. de Souza
    dos Santos, V. G. C. S.
    de Faria, A. C. Amaro, Jr.
    PHYSICAL REVIEW D, 2007, 75 (12):
  • [40] ON STABLE C-SYMMETRIES FOR A CLASS OF PT-SYMMETRIC OPERATORS
    Patsyuck, O. M.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (01): : 73 - 79