A new class of PT-symmetric Hamiltonians with real spectra

被引:54
|
作者
Cannata, F
Ioffe, M
Roychoudhury, R
Roy, P
机构
[1] St Petersburg State Univ, Inst Phys, Dept Theoret Phys, St Petersburg 198904, Russia
[2] Dipartimento Fis, I-40126 Bologna, Italy
[3] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[4] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700035, W Bengal, India
[5] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
基金
俄罗斯基础研究基金会;
关键词
supersymmetry; PT symmetry; quasi-solvable models; complex Hamiltonians with real spectra;
D O I
10.1016/S0375-9601(01)00144-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate complex PT-symmetric potentials, associated with quasi-exactly solvable non-Hermitian models involving polynomials and a class of rational functions. We also look for special solutions of intertwining relations of SUSY quantum mechanics providing a partnership between a real and a complex PT-symmetric potential of the kind mentioned above. We investigate conditions sufficient to ensure the reality of the full spectrum or, for the quasi-exactly solvable systems, the reality of the energy of the finite number of levels. (C) 2001 Elsevier Science B,V. All rights reserved.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 50 条
  • [1] Spectra of PT-symmetric Hamiltonians on tobogganic contours
    Bila, Hynek
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (02): : 307 - 314
  • [2] Three PT-symmetric Hamiltonians with completely different spectra
    Fernandez, Francisco M.
    Garcia, Javier
    ANNALS OF PHYSICS, 2015, 363 : 496 - 502
  • [3] Analytic approximation for eigenvalues of a class of PT-symmetric Hamiltonians
    Skoromnik, O. D.
    Feranchuk, I. D.
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [4] An analytic family of PT-symmetric Hamiltonians with real eigenvalues
    Caliceti, E.
    Cannata, F.
    Graffi, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
  • [5] Solvable PT-symmetric Hamiltonians
    M. Znojil
    Physics of Atomic Nuclei, 2002, 65 : 1149 - 1151
  • [6] Solvable PT-symmetric Hamiltonians
    Znojil, M
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1149 - 1151
  • [7] Painleve transcendents and PT-symmetric Hamiltonians
    Bender, Carl M.
    Komijani, Javad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (47)
  • [8] Integral transforms and PT-symmetric Hamiltonians
    AlMasri, M. W.
    Wahiddin, M. R. B.
    CHINESE JOURNAL OF PHYSICS, 2023, 85 : 127 - 134
  • [9] Supersymmetry of PT-symmetric tridiagonal Hamiltonians
    AlMasri, Mohammad Walid
    MODERN PHYSICS LETTERS A, 2021, 36 (35)
  • [10] Isospectral local Hamiltonians for perturbative PT-symmetric Hamiltonians
    Li, Yi-Da
    Wang, Qing
    PHYSICAL REVIEW D, 2023, 108 (08)