A new class of PT-symmetric Hamiltonians with real spectra

被引:54
|
作者
Cannata, F
Ioffe, M
Roychoudhury, R
Roy, P
机构
[1] St Petersburg State Univ, Inst Phys, Dept Theoret Phys, St Petersburg 198904, Russia
[2] Dipartimento Fis, I-40126 Bologna, Italy
[3] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[4] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700035, W Bengal, India
[5] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
基金
俄罗斯基础研究基金会;
关键词
supersymmetry; PT symmetry; quasi-solvable models; complex Hamiltonians with real spectra;
D O I
10.1016/S0375-9601(01)00144-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate complex PT-symmetric potentials, associated with quasi-exactly solvable non-Hermitian models involving polynomials and a class of rational functions. We also look for special solutions of intertwining relations of SUSY quantum mechanics providing a partnership between a real and a complex PT-symmetric potential of the kind mentioned above. We investigate conditions sufficient to ensure the reality of the full spectrum or, for the quasi-exactly solvable systems, the reality of the energy of the finite number of levels. (C) 2001 Elsevier Science B,V. All rights reserved.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 50 条
  • [21] On the existence of real spectra in PT-symmetric honeycomb optical lattices
    Curtis, Christopher W.
    Ablowitz, Mark J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (22)
  • [22] Systematic search for PT-symmetric potentials with real energy spectra
    Lévai, G
    Znojil, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (40): : 7165 - 7180
  • [23] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians:Bethe ansatz method
    M Baradaran
    H Panahi
    Chinese Physics B, 2017, 26 (06) : 14 - 21
  • [24] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
    Baradaran, M.
    Panahi, H.
    CHINESE PHYSICS B, 2017, 26 (06)
  • [25] Photonic quantum simulations of coupled PT-symmetric Hamiltonians
    Maraviglia, Nicola
    Yard, Patrick
    Wakefield, Ross
    Carolan, Jacques
    Sparrow, Chris
    Chakhmakhchyan, Levon
    Harrold, Chris
    Hashimoto, Toshikazu
    Matsuda, Nobuyuki
    Harter, Andrew K.
    Joglekar, Yogesh N.
    Laing, Anthony
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [26] Fundamental length in quantum theories with PT-symmetric Hamiltonians
    Znojil, Miloslav
    PHYSICAL REVIEW D, 2009, 80 (04):
  • [27] A new PT-symmetric complex Hamiltonian with a real spectrum
    Bagchi, B
    Roychoudhury, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01): : L1 - L3
  • [28] PT-symmetric, quasi-exactly solvable matrix Hamiltonians
    Brihaye, Yves
    Nininahazwe, Ancilla
    Mandal, Bhabani Prasad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (43) : 13063 - 13073
  • [29] PT-symmetric potentials having continuous spectra
    Wen, Zichao
    Bender, Carl M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (37)
  • [30] Spectra of PT-symmetric operators and perturbation theory
    Caliceti, E
    Graffi, S
    Sjöstrand, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : 185 - 193