New Analytical Approach for Fractional Cubic Nonlinear Schrodinger Equation Via Laplace Transform

被引:2
|
作者
Singh, Jagdev [1 ]
Kumar, Devendra [2 ]
机构
[1] Jagannath Univ, Dept Math, Jaipur 303901, Rajasthan, India
[2] Jagannath Gupta Inst Engn & Technol, Dept Math, Jaipur 302022, Rajasthan, India
关键词
Fractional cubic nonlinear Schrodinger equation; Laplace transform; Homotopy perturbation transform method; He's polynomials; Maple code; HOMOTOPY-PERTURBATION METHOD;
D O I
10.1007/978-81-322-1602-5_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a user-friendly algorithm based on new homotopy perturbation transform method (HPTM) is proposed to obtain approximate solution of a time-space fractional cubic nonlinear Schrodinger equation. The numerical solutions obtained by the HPTM indicate that the technique is easy to implement and computationally very attractive.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 50 条
  • [41] On the solution of the fractional nonlinear Schrodinger equation
    Rida, S. Z.
    EI-Sherbiny, H. M.
    Arafa, A. A. M.
    PHYSICS LETTERS A, 2008, 372 (05) : 553 - 558
  • [42] A NONLINEAR SCHRODINGER EQUATION WITH FRACTIONAL NOISE
    Deya, Aurelien
    Schaeffer, Nicolas
    Thomann, Laurent
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) : 4375 - 4422
  • [43] Accurate sets of solitary solutions for the quadratic-cubic fractional nonlinear Schrodinger equation
    Attia, Raghda A. M.
    Khater, Mostafa M. A.
    El-Sayed Ahmed, A.
    El-Shorbagy, M. A.
    AIP ADVANCES, 2021, 11 (05)
  • [44] On novel analytical solution of time-fractional Schrodinger equation within a hybrid transform
    Rashid, Saima
    Ashraf, Rehana
    Tahir, Madeeha
    MATHEMATICAL SCIENCES, 2023, 17 (04) : 351 - 369
  • [45] Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform
    Alshammari, Saleh
    Iqbal, Naveed
    Yar, Mohammad
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [46] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)
  • [47] Interaction of Airy beams modeled by the fractional nonlinear cubic-quintic Schrodinger equation
    Chen, Weijun
    Lian, Cheng
    Luo, Yuang
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [48] New analytical methods for solving a class of conformable fractional differential equations by fractional Laplace transform
    Molaei, Mohammad
    Saei, Farhad Dastmalchi
    Javidi, Mohammad
    Mahmoudi, Yaghoub
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (02): : 396 - 407
  • [49] On a conservative Fourier spectral Galerkin method for cubic nonlinear Schrodinger equation with fractional Laplacian
    Zou, Guang-an
    Wang, Bo
    Sheu, Tony W. H.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 168 (168) : 122 - 134
  • [50] A new approach to the cubic Schrodinger equation: An application of the decomposition technique
    Khuri, SA
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (2-3) : 251 - 254