New Analytical Approach for Fractional Cubic Nonlinear Schrodinger Equation Via Laplace Transform

被引:2
|
作者
Singh, Jagdev [1 ]
Kumar, Devendra [2 ]
机构
[1] Jagannath Univ, Dept Math, Jaipur 303901, Rajasthan, India
[2] Jagannath Gupta Inst Engn & Technol, Dept Math, Jaipur 302022, Rajasthan, India
关键词
Fractional cubic nonlinear Schrodinger equation; Laplace transform; Homotopy perturbation transform method; He's polynomials; Maple code; HOMOTOPY-PERTURBATION METHOD;
D O I
10.1007/978-81-322-1602-5_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a user-friendly algorithm based on new homotopy perturbation transform method (HPTM) is proposed to obtain approximate solution of a time-space fractional cubic nonlinear Schrodinger equation. The numerical solutions obtained by the HPTM indicate that the technique is easy to implement and computationally very attractive.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 50 条
  • [21] NUMERICAL SOLUTIONS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS VIA LAPLACE TRANSFORM
    Cetinkaya, Suleyman
    Demir, Ali
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (02): : 249 - 257
  • [22] ANALYTICAL SOLUTION OF THE SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Abdel-Salam, Emad A-B.
    Yousif, Eltayeb A.
    El-Aasser, Mostafa A.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 19 - 34
  • [23] Solving a nonlinear fractional Schrodinger equation using cubic B-splines
    Erfanian, M.
    Zeidabadi, H.
    Rashki, M.
    Borzouei, H.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [24] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    CHAOS SOLITONS & FRACTALS, 2020, 137
  • [25] New analytical solutions to the nonlinear Schrodinger equation model
    Zhang, YY
    Zheng, Y
    Zhang, HQ
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (11-12): : 775 - 782
  • [26] Approximate solution to the time-space fractional cubic nonlinear Schrodinger equation
    Herzallah, Mohamed A. E.
    Gepreel, Khaled A.
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) : 5678 - 5685
  • [27] Exact solutions of the Schrodinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials
    Arda, Altug
    Sever, Ramazan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (04) : 971 - 980
  • [28] An approximate solution of nonlinear fractional differential equation by Laplace transform and Adomian polynomials
    Yang, C. (cdruby@126.com), 1600, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (10):
  • [29] On instability for the cubic nonlinear Schrodinger equation
    Carles, Remi
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (08) : 483 - 486
  • [30] Cubic nonlinear Schrodinger equation with vorticity
    Caliari, M.
    Loffredo, M. I.
    Morato, L. M.
    Zuccher, S.
    NEW JOURNAL OF PHYSICS, 2008, 10